Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms.

IF 11.7 1区 医学 Q1 CELL BIOLOGY Cell Reports Medicine Pub Date : 2024-10-15 Epub Date: 2024-09-25 DOI:10.1016/j.xcrm.2024.101746
Fares Alahdab, Maliazurina Binti Saad, Ahmed Ibrahim Ahmed, Qasem Al Tashi, Muhammad Aminu, Yushui Han, Jonathan B Moody, Venkatesh L Murthy, Jia Wu, Mouaz H Al-Mallah
{"title":"Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms.","authors":"Fares Alahdab, Maliazurina Binti Saad, Ahmed Ibrahim Ahmed, Qasem Al Tashi, Muhammad Aminu, Yushui Han, Jonathan B Moody, Venkatesh L Murthy, Jia Wu, Mouaz H Al-Mallah","doi":"10.1016/j.xcrm.2024.101746","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET) and 17,649 ECG-single-photon emission computed tomography (SPECT) data pairs, the ML model is trained with a swarm intelligence approach and support vector regression (SVR). The model achieves a receiver-operator curve (ROC) area under the curve (AUC) of 0.83, with a sensitivity and specificity of 0.75. An ECG-MFR value below 2 is significantly associated with MACE, with hazard ratios (HRs) of 3.85 and 3.70 in the discovery and validation phases, respectively. The model's C-statistic is 0.76, with a net reclassification improvement (NRI) of 0.35. Validated in an independent cohort, the ML model using ECG data offers superior MACE prediction compared to baseline clinical models, highlighting its potential for risk stratification in patients with coronary artery disease (CAD) using the accessible 12-lead ECG.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101746","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET) and 17,649 ECG-single-photon emission computed tomography (SPECT) data pairs, the ML model is trained with a swarm intelligence approach and support vector regression (SVR). The model achieves a receiver-operator curve (ROC) area under the curve (AUC) of 0.83, with a sensitivity and specificity of 0.75. An ECG-MFR value below 2 is significantly associated with MACE, with hazard ratios (HRs) of 3.85 and 3.70 in the discovery and validation phases, respectively. The model's C-statistic is 0.76, with a net reclassification improvement (NRI) of 0.35. Validated in an independent cohort, the ML model using ECG data offers superior MACE prediction compared to baseline clinical models, highlighting its potential for risk stratification in patients with coronary artery disease (CAD) using the accessible 12-lead ECG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发和验证机器学习模型,根据患者心电图预测心肌血流量和临床疗效。
我们利用心电图(ECG)开发了一种机器学习(ML)模型来预测心肌血流储备(MFR),并评估其对重大不良心血管事件(MACE)的预后价值。利用 3,639 对心电图-正电子发射计算机断层扫描(PET)数据对和 17,649 对心电图-单光子发射计算机断层扫描(SPECT)数据对,采用蜂群智能方法和支持向量回归(SVR)对 ML 模型进行了训练。该模型的接收器操作曲线(ROC)曲线下面积(AUC)为 0.83,灵敏度和特异度均为 0.75。心电图-MFR值低于2与MACE显著相关,发现阶段和验证阶段的危险比(HR)分别为3.85和3.70。该模型的C统计量为0.76,净再分类改进(NRI)为0.35。经独立队列验证,与基线临床模型相比,使用心电图数据的 ML 模型具有更优越的 MACE 预测能力,这突出表明了该模型在使用可获取的 12 导联心电图对冠状动脉疾病(CAD)患者进行风险分层方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
期刊最新文献
Cytometry masked autoencoder: An accurate and interpretable automated immunophenotyper. Multi-platform biomarkers of response to an immune checkpoint inhibitor in the neoadjuvant I-SPY 2 trial for early-stage breast cancer. Preclinical study and phase 2 trial of neoadjuvant pyrotinib combined with chemotherapy in luminal/HER2-low breast cancer: PILHLE-001 study. Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma. Degradation of IKZF1 prevents epigenetic progression of T cell exhaustion in an antigen-specific assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1