Anna E Bugrova, Polina A Strelnikova, Alexey S Kononikhin, Natalia V Zakharova, Elizaveta O Diyachkova, Alexander G Brzhozovskiy, Maria I Indeykina, Ilya N Kurochkin, Alexander V Averyanov, Evgeny N Nikolaev
{"title":"Targeted MRM-analysis of plasma proteins in frozen whole blood samples from patients with COVID-19: a retrospective study.","authors":"Anna E Bugrova, Polina A Strelnikova, Alexey S Kononikhin, Natalia V Zakharova, Elizaveta O Diyachkova, Alexander G Brzhozovskiy, Maria I Indeykina, Ilya N Kurochkin, Alexander V Averyanov, Evgeny N Nikolaev","doi":"10.1515/cclm-2024-0800","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The COVID-19 pandemic has exposed a number of key challenges that need to be urgently addressed. Mass spectrometric studies of blood plasma proteomics provide a deep understanding of the relationship between the severe course of infection and activation of specific pathophysiological pathways. Analysis of plasma proteins in whole blood may also be relevant for the pandemic as it requires minimal sample preparation.</p><p><strong>Methods: </strong>The frozen whole blood samples were used to analyze 203 plasma proteins using multiple reaction monitoring (MRM) mass spectrometry and stable isotope-labeled peptide standards (SIS). A total of 131 samples (FRCC, Russia) from patients with mild (n=41), moderate (n=39) and severe (n=19) COVID-19 infection and healthy controls (n=32) were analyzed.</p><p><strong>Results: </strong>Levels of 94 proteins were quantified and compared. Significant differences between all of the groups were revealed for 44 proteins. Changes in the levels of 61 reproducible COVID-19 markers (SERPINA3, SERPING1, ORM1, HRG, LBP, APOA1, AHSG, AFM, ITIH2, etc.) were consistent with studies performed with serum/plasma samples. The best-performing classifier built with 10 proteins achieved the best combination of ROC-AUC (0.97-0.98) and accuracy (0.90-0.93) metrics and distinguished patients from controls, as well as patients by severity.</p><p><strong>Conclusions: </strong>Here, for the first time, frozen whole blood samples were used for proteomic analysis and assessment of the status of patients with COVID-19. The results obtained with frozen whole blood samples are consistent with those from plasma and serum.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-0800","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The COVID-19 pandemic has exposed a number of key challenges that need to be urgently addressed. Mass spectrometric studies of blood plasma proteomics provide a deep understanding of the relationship between the severe course of infection and activation of specific pathophysiological pathways. Analysis of plasma proteins in whole blood may also be relevant for the pandemic as it requires minimal sample preparation.
Methods: The frozen whole blood samples were used to analyze 203 plasma proteins using multiple reaction monitoring (MRM) mass spectrometry and stable isotope-labeled peptide standards (SIS). A total of 131 samples (FRCC, Russia) from patients with mild (n=41), moderate (n=39) and severe (n=19) COVID-19 infection and healthy controls (n=32) were analyzed.
Results: Levels of 94 proteins were quantified and compared. Significant differences between all of the groups were revealed for 44 proteins. Changes in the levels of 61 reproducible COVID-19 markers (SERPINA3, SERPING1, ORM1, HRG, LBP, APOA1, AHSG, AFM, ITIH2, etc.) were consistent with studies performed with serum/plasma samples. The best-performing classifier built with 10 proteins achieved the best combination of ROC-AUC (0.97-0.98) and accuracy (0.90-0.93) metrics and distinguished patients from controls, as well as patients by severity.
Conclusions: Here, for the first time, frozen whole blood samples were used for proteomic analysis and assessment of the status of patients with COVID-19. The results obtained with frozen whole blood samples are consistent with those from plasma and serum.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!