Ampullaviruses: From Extreme Environments to Biotechnological Innovation.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-09-27 DOI:10.2174/0113892010325244240916112436
Alaa A A Aljabali, Mohamed El- Tanani, Almuthanna Alkaraki, Vijay Mishra, Yachana Mishra, Murtaza M Tambuwala
{"title":"Ampullaviruses: From Extreme Environments to Biotechnological Innovation.","authors":"Alaa A A Aljabali, Mohamed El- Tanani, Almuthanna Alkaraki, Vijay Mishra, Yachana Mishra, Murtaza M Tambuwala","doi":"10.2174/0113892010325244240916112436","DOIUrl":null,"url":null,"abstract":"<p><p>Ampullaviruses are unique among viruses. They live in extreme environments and have special bottle-shaped architecture. These features make them useful tools for biotechnology. These viruses have compact genomes. They encode a range of enzymes and proteins. Their natural environment highlights their suitability for industrial applications. Ongoing research explores ways in which these viruses can improve enzyme stability. They are also employed in the creation of new biosensors and the development of new bioremediation techniques. High coinfection rates and the ecology of ampullaviruses at larger scales can also reveal new viral vectors. They can also help improve phage therapy. Here, we have explored the structure and function of ampullaviruses. We have focused on their use in biotechnology. We have also identified their characteristics that could prove to be useful. We have also pointed out key knowledge gaps and bridging them could further extend the biotechnological uses.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010325244240916112436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ampullaviruses are unique among viruses. They live in extreme environments and have special bottle-shaped architecture. These features make them useful tools for biotechnology. These viruses have compact genomes. They encode a range of enzymes and proteins. Their natural environment highlights their suitability for industrial applications. Ongoing research explores ways in which these viruses can improve enzyme stability. They are also employed in the creation of new biosensors and the development of new bioremediation techniques. High coinfection rates and the ecology of ampullaviruses at larger scales can also reveal new viral vectors. They can also help improve phage therapy. Here, we have explored the structure and function of ampullaviruses. We have focused on their use in biotechnology. We have also identified their characteristics that could prove to be useful. We have also pointed out key knowledge gaps and bridging them could further extend the biotechnological uses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安普拉病毒:从极端环境到生物技术创新。
安普拉病毒在病毒中是独一无二的。它们生活在极端环境中,具有特殊的瓶形结构。这些特点使它们成为生物技术的有用工具。这些病毒的基因组结构紧凑。它们编码一系列酶和蛋白质。它们所处的自然环境突出了它们在工业应用中的适用性。正在进行的研究探索了这些病毒提高酶稳定性的方法。它们还被用于制造新的生物传感器和开发新的生物修复技术。更大规模的高共感染率和安布拉病毒生态学也能揭示新的病毒载体。它们还有助于改进噬菌体疗法。在这里,我们探讨了安布拉病毒的结构和功能。我们重点研究了它们在生物技术中的应用。我们还确定了它们可能有用的特性。我们还指出了关键的知识缺口,弥补这些缺口可以进一步扩大生物技术的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Dihydroartemisinin Modulates Prostate Cancer Progression by Regulating Multiple Genes via the Transcription Factor NR2F2. Extraction, Isolation, Characterization, and Development of Phospholipids Complex Nanocarrier for Improved Solubility, Antiasthmatic, and Pharmacokinetic Potential of Curcuminoids. A Liquid Band-Aid with Mesenchymal Stem Cell-Derived Exosomes for Wound Healing in Mice. Ampullaviruses: From Extreme Environments to Biotechnological Innovation. Biomarkers and Novel Therapies of Diabetic Neuropathy: An Updated Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1