{"title":"CPMKG: a condition-based knowledge graph for precision medicine.","authors":"Jiaxin Yang, Xinhao Zhuang, Zhenqi Li, Gang Xiong, Ping Xu, Yunchao Ling, Guoqing Zhang","doi":"10.1093/database/baae102","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae102","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.