Hui Xu , Wenjuan Dai , Zhengyu Xiong , NaNa Huang , Yanrui Wang , Zhe Yang , Shanshan Luo , Jielian Wu
{"title":"Identification and antibacterial activity of a novel phage-type lysozyme from the freshwater mussel Hyriopsis cumingii","authors":"Hui Xu , Wenjuan Dai , Zhengyu Xiong , NaNa Huang , Yanrui Wang , Zhe Yang , Shanshan Luo , Jielian Wu","doi":"10.1016/j.dci.2024.105272","DOIUrl":null,"url":null,"abstract":"<div><div>A cDNA encoding a phage-type lysozyme, designated as HcPLYZ, was successfully cloned from <em>Hyriopsis cumingii</em>. The full-length cDNA sequence of HcPLYZ was determined to be 896 base pairs in length. Analysis revealed the absence of a signal peptide at its N-terminus, and identified two highly conserved phage-type lysozyme activity sites, Glu<sup>20</sup> and Asp<sup>29</sup>, within the deduced amino acid sequence of HcPLYZ. The results of the cloning and sequencing symbiotic bacteria in tissues were consistent with those obtained using tissue cDNA as the template, suggesting that HcPLYZ may originate a symbiotic bacterium. The expression levels of HcPLYZ mRNA exhibited significant variations across different tissues. Successful expression was induced using IPTG, and the native recombinant protein was subsequently purified through affinity chromatography employing Ni<sup>2+</sup>, and the optimal pH and temperature of which were determined to be 5.5 and 50 °C, respectively. Following exposure to <em>Aeromonas hydrophila</em>, there was a significant increase in the levels of HcPLYZ mRNA in the hemocytes, hepatopancreas, and gills. HcPLYZ was demonstrated the inhibition activity of 55% and 83% against <em>Micrococcus lysodeikticus</em> under pH 5.5 and 50 °C conditions, respectively. These results suggested that HcPLYZ possessed antibacterial activity against both <em>A. hydrophila</em> and <em>M. lysodeikticus</em>.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24001447","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
A cDNA encoding a phage-type lysozyme, designated as HcPLYZ, was successfully cloned from Hyriopsis cumingii. The full-length cDNA sequence of HcPLYZ was determined to be 896 base pairs in length. Analysis revealed the absence of a signal peptide at its N-terminus, and identified two highly conserved phage-type lysozyme activity sites, Glu20 and Asp29, within the deduced amino acid sequence of HcPLYZ. The results of the cloning and sequencing symbiotic bacteria in tissues were consistent with those obtained using tissue cDNA as the template, suggesting that HcPLYZ may originate a symbiotic bacterium. The expression levels of HcPLYZ mRNA exhibited significant variations across different tissues. Successful expression was induced using IPTG, and the native recombinant protein was subsequently purified through affinity chromatography employing Ni2+, and the optimal pH and temperature of which were determined to be 5.5 and 50 °C, respectively. Following exposure to Aeromonas hydrophila, there was a significant increase in the levels of HcPLYZ mRNA in the hemocytes, hepatopancreas, and gills. HcPLYZ was demonstrated the inhibition activity of 55% and 83% against Micrococcus lysodeikticus under pH 5.5 and 50 °C conditions, respectively. These results suggested that HcPLYZ possessed antibacterial activity against both A. hydrophila and M. lysodeikticus.
期刊介绍:
Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.