Oral delivery of stabilized lipid nanoparticles for nucleic acid therapeutics.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Drug Delivery and Translational Research Pub Date : 2024-09-19 DOI:10.1007/s13346-024-01709-4
Kanika Suri, Liam Pfeifer, Donna Cvet, Angela Li, Michael McCoy, Amit Singh, Mansoor M Amiji
{"title":"Oral delivery of stabilized lipid nanoparticles for nucleic acid therapeutics.","authors":"Kanika Suri, Liam Pfeifer, Donna Cvet, Angela Li, Michael McCoy, Amit Singh, Mansoor M Amiji","doi":"10.1007/s13346-024-01709-4","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01709-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gastrointestinal disorders originate in the gastrointestinal tract (GIT), and the therapies can benefit from direct access to the GIT achievable through the oral route. RNA molecules show great promise therapeutically but are highly susceptible to degradation and often require a carrier for cytoplasmic access. Lipid nanoparticles (LNPs) are clinically proven drug-delivery agents, primarily administered parenterally. An ideal Orally Delivered (OrD) LNP formulation should overcome the diverse GI environment, successfully delivering the drug to the site of action. A versatile OrD LNP formulation has been developed to encapsulate and deliver siRNA and mRNA in this paper. The formulations were prepared by the systematic addition of cationic lipid to the base LNP formulation, keeping the total of cationic lipid and ionizable lipid to 50 mol%. Biorelevant media stability depicted increased resistance to bile salt mediated destabilization upon the addition of the cationic lipid, however the in vitro efficacy data underscored the importance of the ionizable lipid. Based on this, OrD LNP was selected comprising of 20% cationic lipid and 30% ionizable lipid. Further investigation revealed the enhanced efficacy of OrD LNP in vitro after incubation in different dilutions of fasted gastric, fasted intestinal media, and mucin. Confocal imaging and flow cytometry confirmed uptake while in vivo studies demonstrated efficacy with siRNA and mRNA as payloads. Taken together, this research introduces OrD LNP to deliver nucleic acid locally to the GIT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于核酸治疗的稳定脂质纳米颗粒的口服给药。
胃肠道疾病起源于胃肠道(GIT),通过口服途径直接进入胃肠道对治疗大有裨益。RNA 分子显示出巨大的治疗前景,但极易降解,通常需要载体才能进入细胞质。脂质纳米颗粒(LNPs)是经过临床验证的给药剂,主要通过肠外给药。理想的口服给药(OrD)LNP 制剂应克服多种多样的消化道环境,成功地将药物输送到作用部位。本文开发了一种多功能 OrD LNP 制剂,用于包裹和递送 siRNA 和 mRNA。制备该制剂的方法是在 LNP 基础制剂中系统地添加阳离子脂质,将阳离子脂质和可电离脂质的总含量控制在 50 摩尔%。生物相关介质稳定性表明,添加阳离子脂质后,对胆盐介导的不稳定性的抵抗力增强,但体外药效数据强调了可电离脂质的重要性。在此基础上,我们选择了含有 20% 阳离子脂质和 30% 可电离脂质的 OrD LNP。进一步的研究表明,在不同稀释度的空腹胃培养基、空腹肠培养基和粘蛋白中培养后,OrD LNP 的体外药效增强。共焦成像和流式细胞术证实了其吸收,而体内研究则证明了以 siRNA 和 mRNA 为有效载荷的功效。综上所述,这项研究引入了 OrD LNP,可将核酸局部递送至胃肠道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
期刊最新文献
Local delivery of doxorubicin prodrug via lipid nanocapsule-based hydrogel for the treatment of glioblastoma. Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes. 3D-printed Laponite/Alginate hydrogel-based suppositories for versatile drug loading and release. Resveratrol-loaded invasome gel: A promising nanoformulation for treatment of skin cancer. Nanocrystals and nanosuspensions: an exploration from classic formulations to advanced drug delivery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1