Theodoros Panou, Evanthia Gouveri, Djordje S Popovic, Nikolaos Papanas
{"title":"Amylin analogs for the treatment of obesity without diabetes: present and future.","authors":"Theodoros Panou, Evanthia Gouveri, Djordje S Popovic, Nikolaos Papanas","doi":"10.1080/17512433.2024.2409403","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Obesity is a pandemic, linked with increased morbidity including diabetes mellitus (DM) and certain cancer types. Amylin is a major regulatory hormone for satiation and food intake perception in humans. Amylin analogs (pramlintide and cagrilintide) are emerging as promising anti-obesity agents in non-DM subjects.</p><p><strong>Areas covered: </strong>Pramlintide, the first amylin analog, initially used for the treatment of both type 1 and type 2 DM, has demonstrated weight-lowering action. Clinical trials confirmed a weight loss exceeding 3% in the study period without major untoward effects, which was maintained beyond the follow-up period. Recently, cagrilintide, a long-lasting synthetic amylin analog has been introduced. Cagrilintide has achieved adequate weight loss, reaching even more than 10% of the total weight in early clinical trials. However, adverse gastrointestinal effects, particularly nausea, were more frequent compared with pramlintide. Clinical trials have also confirmed the effectiveness of cagrilintide in comparison with glucagon-like peptide 1 receptor agonists.</p><p><strong>Expert opinion: </strong>Amylin analogs will certainly enrich the growing therapeutic armamentarium aimed at tackling obesity. The most exciting future research venue could be the development of their combinations with other weight-lowering drugs, especially dual and triple incretin-based co-agonists, thus potentially providing massive weight-loss effects.</p>","PeriodicalId":12207,"journal":{"name":"Expert Review of Clinical Pharmacology","volume":" ","pages":"1-9"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17512433.2024.2409403","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Obesity is a pandemic, linked with increased morbidity including diabetes mellitus (DM) and certain cancer types. Amylin is a major regulatory hormone for satiation and food intake perception in humans. Amylin analogs (pramlintide and cagrilintide) are emerging as promising anti-obesity agents in non-DM subjects.
Areas covered: Pramlintide, the first amylin analog, initially used for the treatment of both type 1 and type 2 DM, has demonstrated weight-lowering action. Clinical trials confirmed a weight loss exceeding 3% in the study period without major untoward effects, which was maintained beyond the follow-up period. Recently, cagrilintide, a long-lasting synthetic amylin analog has been introduced. Cagrilintide has achieved adequate weight loss, reaching even more than 10% of the total weight in early clinical trials. However, adverse gastrointestinal effects, particularly nausea, were more frequent compared with pramlintide. Clinical trials have also confirmed the effectiveness of cagrilintide in comparison with glucagon-like peptide 1 receptor agonists.
Expert opinion: Amylin analogs will certainly enrich the growing therapeutic armamentarium aimed at tackling obesity. The most exciting future research venue could be the development of their combinations with other weight-lowering drugs, especially dual and triple incretin-based co-agonists, thus potentially providing massive weight-loss effects.
期刊介绍:
Advances in drug development technologies are yielding innovative new therapies, from potentially lifesaving medicines to lifestyle products. In recent years, however, the cost of developing new drugs has soared, and concerns over drug resistance and pharmacoeconomics have come to the fore. Adverse reactions experienced at the clinical trial level serve as a constant reminder of the importance of rigorous safety and toxicity testing. Furthermore the advent of pharmacogenomics and ‘individualized’ approaches to therapy will demand a fresh approach to drug evaluation and healthcare delivery.
Clinical Pharmacology provides an essential role in integrating the expertise of all of the specialists and players who are active in meeting such challenges in modern biomedical practice.