Population pharmacokinetics of nirmatrelvir/ritonavir in critically ill Chinese COVID-19 patients and recommendations for medication use: a two-center retrospective study.
{"title":"Population pharmacokinetics of nirmatrelvir/ritonavir in critically ill Chinese COVID-19 patients and recommendations for medication use: a two-center retrospective study.","authors":"Junjun Xu, Jinmeng Li, Meng Chen, Huifang Jiang, Xudong Fan, Yangmin Hu, Haili Shan, Mingdong Yang, Yichao Xu, Yuying Lang, Haibin Dai, Xinjun Cai","doi":"10.1080/17512433.2024.2410385","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to establish population pharmacokinetics (PPK) models of nirmatrelvir/ritonavir in critically ill Chinese patients with the coronavirus disease 2019 (COVID-19) infection, explore factors affecting the pharmacokinetics (PK) of nirmatrelvir/ritonavir.</p><p><strong>Methods: </strong>A total of 285 serum samples and clinical data were collected from 152 patients. The PPK models of nirmatrelvir/ritonavir were analyzed using nonlinear mixed-effect modeling (NONMEM) approach. The optimal dosing regimen for patients with different renal function was determined using Monte Carlo simulations.</p><p><strong>Results: </strong>The population typical values of apparent clearance (CL/F) and apparent volume of distribution (V/F) of nirmatrelvir were 2.26 L/h and 15.3 L, respectively. Notably, creatinine clearance (CrCL) significantly influenced the PK variation of nirmatrelvir. Monte Carlo simulations suggested that patients with mild-to-moderate renal impairment experienced a 22.0-59.9% increase in the area under the curve (AUC) when they were administered a standard dose of nirmatrelvir compared to those with normal renal function. The AUC in patients with severe renal impairment after administration of 150 mg q12h nirmatrelvir was similar to that in patients with normal renal function after administration of 300 mg q12h nirmatrelvir.</p><p><strong>Conclusions: </strong>PPK modeling and simulation provided a reference for the rational clinical application of nirmatrelvir/ritonavir in critically ill Chinese patients.</p>","PeriodicalId":12207,"journal":{"name":"Expert Review of Clinical Pharmacology","volume":" ","pages":"1071-1079"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Clinical Pharmacology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17512433.2024.2410385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to establish population pharmacokinetics (PPK) models of nirmatrelvir/ritonavir in critically ill Chinese patients with the coronavirus disease 2019 (COVID-19) infection, explore factors affecting the pharmacokinetics (PK) of nirmatrelvir/ritonavir.
Methods: A total of 285 serum samples and clinical data were collected from 152 patients. The PPK models of nirmatrelvir/ritonavir were analyzed using nonlinear mixed-effect modeling (NONMEM) approach. The optimal dosing regimen for patients with different renal function was determined using Monte Carlo simulations.
Results: The population typical values of apparent clearance (CL/F) and apparent volume of distribution (V/F) of nirmatrelvir were 2.26 L/h and 15.3 L, respectively. Notably, creatinine clearance (CrCL) significantly influenced the PK variation of nirmatrelvir. Monte Carlo simulations suggested that patients with mild-to-moderate renal impairment experienced a 22.0-59.9% increase in the area under the curve (AUC) when they were administered a standard dose of nirmatrelvir compared to those with normal renal function. The AUC in patients with severe renal impairment after administration of 150 mg q12h nirmatrelvir was similar to that in patients with normal renal function after administration of 300 mg q12h nirmatrelvir.
Conclusions: PPK modeling and simulation provided a reference for the rational clinical application of nirmatrelvir/ritonavir in critically ill Chinese patients.
期刊介绍:
Advances in drug development technologies are yielding innovative new therapies, from potentially lifesaving medicines to lifestyle products. In recent years, however, the cost of developing new drugs has soared, and concerns over drug resistance and pharmacoeconomics have come to the fore. Adverse reactions experienced at the clinical trial level serve as a constant reminder of the importance of rigorous safety and toxicity testing. Furthermore the advent of pharmacogenomics and ‘individualized’ approaches to therapy will demand a fresh approach to drug evaluation and healthcare delivery.
Clinical Pharmacology provides an essential role in integrating the expertise of all of the specialists and players who are active in meeting such challenges in modern biomedical practice.