Changhe Wei, Jinli Yan, Pan Xu, Xia Wu, Yan Yi, Xuemei Yue, Caiyan Chen, Lang Yan, Mengmeng Yin
{"title":"Genome-wide analysis of the potato GRF gene family and their expression profiles in response to hormone and Ralstonia solanacearum infection.","authors":"Changhe Wei, Jinli Yan, Pan Xu, Xia Wu, Yan Yi, Xuemei Yue, Caiyan Chen, Lang Yan, Mengmeng Yin","doi":"10.1007/s13258-024-01572-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Potato (Solanum tuberosum L.) is one of the most economically significant crops globally. Nevertheless, potato cultivation is becoming increasingly susceptible to a multitude of diseases, including bacterial wilt, which is caused by Ralstonia solanacearum.</p><p><strong>Objective: </strong>To identify the GRF gene family in potatoes and to examine their expression profiles in response to hormones and R. solanacearum infection.</p><p><strong>Methods: </strong>A comprehensive genome-wide analysis was conducted to identify the GRF gene family in the potato genome.</p><p><strong>Results: </strong>A total of 13 GRF genes were identified from the latest potato genome, including five StGRFs belonging to the ɛ group and eight of the non-ɛ group. The transcriptional responses of the StGRFs to two biotic stress-related phytohormones (SA and MeJA) were defined, as well as the response to infection with R. solanacearum in a bacterial wilt-sensitive cultivar, S. tuberosum 'Qingshu 9'. Many StGRF genes exhibited high induction levels in response to R. solanacearum infection and SA treatment while displaying a marked decline in expression in the presence of MeJA. Furthermore, protein interaction network analysis revealed that the StGRF proteins interact with several candidate target proteins, indicating that GRF proteins are ubiquitous regulators in potatoes. However, the associations between two type III effectors (T3Es) RipAC/RipH2 from R. solanacearum isolates and StGRF7 were not detectable in a yeast two-hybrid assay.</p><p><strong>Conclusion: </strong>This study provides comprehensive information on the GRF gene family and lays a foundation for further research on the molecular mechanism of potato biotic stress adaptation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01572-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Potato (Solanum tuberosum L.) is one of the most economically significant crops globally. Nevertheless, potato cultivation is becoming increasingly susceptible to a multitude of diseases, including bacterial wilt, which is caused by Ralstonia solanacearum.
Objective: To identify the GRF gene family in potatoes and to examine their expression profiles in response to hormones and R. solanacearum infection.
Methods: A comprehensive genome-wide analysis was conducted to identify the GRF gene family in the potato genome.
Results: A total of 13 GRF genes were identified from the latest potato genome, including five StGRFs belonging to the ɛ group and eight of the non-ɛ group. The transcriptional responses of the StGRFs to two biotic stress-related phytohormones (SA and MeJA) were defined, as well as the response to infection with R. solanacearum in a bacterial wilt-sensitive cultivar, S. tuberosum 'Qingshu 9'. Many StGRF genes exhibited high induction levels in response to R. solanacearum infection and SA treatment while displaying a marked decline in expression in the presence of MeJA. Furthermore, protein interaction network analysis revealed that the StGRF proteins interact with several candidate target proteins, indicating that GRF proteins are ubiquitous regulators in potatoes. However, the associations between two type III effectors (T3Es) RipAC/RipH2 from R. solanacearum isolates and StGRF7 were not detectable in a yeast two-hybrid assay.
Conclusion: This study provides comprehensive information on the GRF gene family and lays a foundation for further research on the molecular mechanism of potato biotic stress adaptation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.