{"title":"Identification of cancer driver genes based on dynamic incentive model.","authors":"Zhipeng Hu, Gaoshi Li, Xinlong Luo, Wei Peng, Jiafei Liu, Xiaoshu Zhu, Jingli Wu","doi":"10.1109/TCBB.2024.3467119","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a complex genomic mutation disease, and identifying cancer driver genes promotes the development of targeted drugs and personalized therapies. The current computational method takes less consideration of the relationship among features and the effect of noise in protein-protein interaction(PPI) data, resulting in a low recognition rate. In this paper, we propose a cancer driver genes identification method based on dynamic incentive model, DIM. This method firstly constructs a hypergraph to reduce the impact of false positive data in PPI. Then, the importance of genes in each hyperedge in hypergraph is considered from three perspectives, network and functional score(NFS) is proposed. By analyzing the relation among features, the dynamic incentive model is proposed to fuse NFS, the differential expression score of mRNA and the differential expression score of miRNA. DIM is compared with some classical methods on breast cancer, lung cancer, prostate cancer, and pan-cancer datasets. The results show that DIM has the best performance on statistical evaluation indicators, functional consistency and the partial area under the ROC curve, and has good cross-cancer capability.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3467119","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a complex genomic mutation disease, and identifying cancer driver genes promotes the development of targeted drugs and personalized therapies. The current computational method takes less consideration of the relationship among features and the effect of noise in protein-protein interaction(PPI) data, resulting in a low recognition rate. In this paper, we propose a cancer driver genes identification method based on dynamic incentive model, DIM. This method firstly constructs a hypergraph to reduce the impact of false positive data in PPI. Then, the importance of genes in each hyperedge in hypergraph is considered from three perspectives, network and functional score(NFS) is proposed. By analyzing the relation among features, the dynamic incentive model is proposed to fuse NFS, the differential expression score of mRNA and the differential expression score of miRNA. DIM is compared with some classical methods on breast cancer, lung cancer, prostate cancer, and pan-cancer datasets. The results show that DIM has the best performance on statistical evaluation indicators, functional consistency and the partial area under the ROC curve, and has good cross-cancer capability.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system