{"title":"Improving Antifreeze Proteins Prediction with Protein Language Models and Hybrid Feature Extraction Networks.","authors":"Jiashun Wu, Yan Liu, Yiheng Zhu, Dong-Jun Yu","doi":"10.1109/TCBB.2024.3467261","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of antifreeze proteins (AFPs) is crucial in developing biomimetic synthetic anti-icing materials and low-temperature organ preservation materials. Although numerous machine learning-based methods have been proposed for AFPs prediction, the complex and diverse nature of AFPs limits the prediction performance of existing methods. In this study, we propose AFP-Deep, a new deep learning method to predict antifreeze proteins by integrating embedding from protein sequences with pre-trained protein language models and evolutionary contexts with hybrid feature extraction networks. The experimental results demonstrated that the main advantage of AFP-Deep is its utilization of pre-trained protein language models, which can extract discriminative global contextual features from protein sequences. Additionally, the hybrid deep neural networks designed for protein language models and evolutionary context feature extraction enhance the correlation between embeddings and antifreeze pattern. The performance evaluation results show that AFP-Deep achieves superior performance compared to state-of-the-art models on benchmark datasets, achieving an AUPRC of 0.724 and 0.924, respectively.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3467261","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of antifreeze proteins (AFPs) is crucial in developing biomimetic synthetic anti-icing materials and low-temperature organ preservation materials. Although numerous machine learning-based methods have been proposed for AFPs prediction, the complex and diverse nature of AFPs limits the prediction performance of existing methods. In this study, we propose AFP-Deep, a new deep learning method to predict antifreeze proteins by integrating embedding from protein sequences with pre-trained protein language models and evolutionary contexts with hybrid feature extraction networks. The experimental results demonstrated that the main advantage of AFP-Deep is its utilization of pre-trained protein language models, which can extract discriminative global contextual features from protein sequences. Additionally, the hybrid deep neural networks designed for protein language models and evolutionary context feature extraction enhance the correlation between embeddings and antifreeze pattern. The performance evaluation results show that AFP-Deep achieves superior performance compared to state-of-the-art models on benchmark datasets, achieving an AUPRC of 0.724 and 0.924, respectively.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system