Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-25 DOI:10.1007/s12026-024-09544-y
Chunhong Li, Yuhua Mao, Jiahua Hu, Chunchun Su, Mengqin Li, Haiyin Tan
{"title":"Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma.","authors":"Chunhong Li, Yuhua Mao, Jiahua Hu, Chunchun Su, Mengqin Li, Haiyin Tan","doi":"10.1007/s12026-024-09544-y","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given that abnormal reprogramming of asparagine metabolism (AM) has emerged as an emerging therapeutic target for anti-tumor therapy. However, the clinical significance of abnormal reprogramming of AM in LUAD patients is unclear. In this study, we collected 864 asparagine metabolism-related genes (AMGs) and used a machine-learning computational framework to develop an asparagine metabolism immunity index (AMII) for LUAD patients. Through the utilization of median AMII scores, LUAD patients were segregated into either a low-AMII group or a high-AMII group. We observed outstanding performance of AMII in predicting survival prognosis in LUAD patients in the TCGA-LUAD cohort and in three externally independently validated GEO cohorts (GSE72094, GSE37745, and GSE30219), and poorer prognosis for LUAD patients in the high-AMII group. The results of univariate and multivariate analyses showed that AMII can be used as an independent risk factor for LUAD patients. In addition, the results of C-index analysis and decision analysis showed that AMII-based nomograms had a robust performance in terms of accuracy of prognostic prediction and net clinical benefit in patients with LUAD. Excitingly, LUAD patients in the low-AMII group were more sensitive to commonly used chemotherapeutic drugs. Consequently, AMII is expected to be a novel diagnostic tool for clinical classification, providing valuable insights for clinical decision-making and personalized management of LUAD patients.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09544-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given that abnormal reprogramming of asparagine metabolism (AM) has emerged as an emerging therapeutic target for anti-tumor therapy. However, the clinical significance of abnormal reprogramming of AM in LUAD patients is unclear. In this study, we collected 864 asparagine metabolism-related genes (AMGs) and used a machine-learning computational framework to develop an asparagine metabolism immunity index (AMII) for LUAD patients. Through the utilization of median AMII scores, LUAD patients were segregated into either a low-AMII group or a high-AMII group. We observed outstanding performance of AMII in predicting survival prognosis in LUAD patients in the TCGA-LUAD cohort and in three externally independently validated GEO cohorts (GSE72094, GSE37745, and GSE30219), and poorer prognosis for LUAD patients in the high-AMII group. The results of univariate and multivariate analyses showed that AMII can be used as an independent risk factor for LUAD patients. In addition, the results of C-index analysis and decision analysis showed that AMII-based nomograms had a robust performance in terms of accuracy of prognostic prediction and net clinical benefit in patients with LUAD. Excitingly, LUAD patients in the low-AMII group were more sensitive to commonly used chemotherapeutic drugs. Consequently, AMII is expected to be a novel diagnostic tool for clinical classification, providing valuable insights for clinical decision-making and personalized management of LUAD patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合机器学习和多组学分析,开发天冬酰胺代谢免疫指数,改善肺腺癌的临床疗效和药物敏感性。
肺腺癌(LUAD)是一种影响呼吸系统的恶性肿瘤。大多数患者被诊断为晚期或转移性肺癌,因为他们的临床症状大多隐匿,导致预后不佳。鉴于天冬酰胺代谢(AM)的异常重编程已成为抗肿瘤疗法的新兴治疗靶点。然而,LUAD 患者天冬酰胺代谢异常重编程的临床意义尚不明确。在这项研究中,我们收集了864个天冬酰胺代谢相关基因(AMGs),并利用机器学习计算框架为LUAD患者制定了天冬酰胺代谢免疫指数(AMII)。通过利用 AMII 中位数得分,LUAD 患者被分为低 AMII 组和高 AMII 组。我们观察到 AMII 在预测 TCGA-LUAD 队列和三个外部独立验证的 GEO 队列(GSE72094、GSE37745 和 GSE30219)中 LUAD 患者的生存预后方面表现出色,而高 AMII 组 LUAD 患者的预后较差。单变量和多变量分析结果表明,AMII 可作为 LUAD 患者的独立危险因素。此外,C指数分析和决策分析的结果表明,基于AMII的提名图在LUAD患者预后预测的准确性和净临床获益方面表现良好。令人兴奋的是,低AMII组的LUAD患者对常用化疗药物更敏感。因此,AMII有望成为一种用于临床分类的新型诊断工具,为LUAD患者的临床决策和个性化管理提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1