{"title":"Deep learning detects subtle facial expressions in a multilevel society primate.","authors":"Gu Fang, Xianlin Peng, Penglin Xie, Jun Ren, Shenglin Peng, Xiaoyi Feng, Xin Tian, Mingzhu Zhou, Zhibo Li, Jinye Peng, Tetsuro Matsuzawa, Zhaoqiang Xia, Baoguo Li","doi":"10.1111/1749-4877.12905","DOIUrl":null,"url":null,"abstract":"<p><p>Facial expressions in nonhuman primates are complex processes involving psychological, emotional, and physiological factors, and may use subtle signals to communicate significant information. However, uncertainty surrounds the functional significance of subtle facial expressions in animals. Using artificial intelligence (AI), this study found that nonhuman primates exhibit subtle facial expressions that are undetectable by human observers. We focused on the golden snub-nosed monkeys (Rhinopithecus roxellana), a primate species with a multilevel society. We collected 3427 front-facing images of monkeys from 275 video clips captured in both wild and laboratory settings. Three deep learning models, EfficientNet, RepMLP, and Tokens-To-Token ViT, were utilized for AI recognition. To compare the accuracy of human performance, two groups were recruited: one with prior animal observation experience and one without any such experience. The results showed human observers to correctly detect facial expressions (32.1% for inexperienced humans and 45.0% for experienced humans on average with a chance level of 33%). In contrast, the AI deep learning models achieved significantly higher accuracy rates. The best-performing model achieved an accuracy of 94.5%. Our results provide evidence that golden snub-nosed monkeys exhibit subtle facial expressions. The results further our understanding of animal facial expressions and also how such modes of communication may contribute to the origin of complex primate social systems.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12905","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Facial expressions in nonhuman primates are complex processes involving psychological, emotional, and physiological factors, and may use subtle signals to communicate significant information. However, uncertainty surrounds the functional significance of subtle facial expressions in animals. Using artificial intelligence (AI), this study found that nonhuman primates exhibit subtle facial expressions that are undetectable by human observers. We focused on the golden snub-nosed monkeys (Rhinopithecus roxellana), a primate species with a multilevel society. We collected 3427 front-facing images of monkeys from 275 video clips captured in both wild and laboratory settings. Three deep learning models, EfficientNet, RepMLP, and Tokens-To-Token ViT, were utilized for AI recognition. To compare the accuracy of human performance, two groups were recruited: one with prior animal observation experience and one without any such experience. The results showed human observers to correctly detect facial expressions (32.1% for inexperienced humans and 45.0% for experienced humans on average with a chance level of 33%). In contrast, the AI deep learning models achieved significantly higher accuracy rates. The best-performing model achieved an accuracy of 94.5%. Our results provide evidence that golden snub-nosed monkeys exhibit subtle facial expressions. The results further our understanding of animal facial expressions and also how such modes of communication may contribute to the origin of complex primate social systems.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations