{"title":"Imerslund-Gräsbeck syndrome in a child with a novel compound heterozygous mutations in the AMN gene: a case report.","authors":"Dedong Zhang, Siying Liu, Bixin Xi, Yongbing Zhu, Yu Chen, Jiasi Zhang, Aiguo Liu","doi":"10.1186/s13052-024-01757-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Imerslund-Gräsbeck syndrome (IGS) is an autosomal recessive disorder characterized by selective vitamin B12 malabsorption, resulting in vitamin B12 deficiency and impaired reabsorption of proximal tubular proteins.This case highlights a previously unidentified compound heterozygous variant in the Amnionless (AMN) gene that causes IGS syndrome and underscores the importance of long-term oral vitamin B12 replacement therapy in managing the condition.</p><p><strong>Case presentation: </strong>In this retrospective analysis, we present the clinical data of a 3-year and 6-month-old female child diagnosed with IGS at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, in November 2018. The child was admitted to the hospital due to a history of anemia persisting for over a month. There was no previous significant medical history. The admission examination revealed megaloblastic anemia with proteinuria. Serum vitamin B12 levels were decreased, while folic acid and renal function were normal. The patient was diagnosed with megaloblastic anemia and started long-term oral vitamin B12 replacement therapy. Throughout the follow-up period, blood tests consistently showed normal results, while proteinuria persisted. In November 2019, the child and her parents underwent whole exome sequencing analysis, which revealed a novel compound heterozygous variant in the AMN gene: c.162 + 1G > A and c.922 C > T (p.Q308X) in the child, c.162 + 1G > A in the father, and c.922 C > T (p.Q308X) in the mother. Therefore, this child was further diagnosed with IGS.</p><p><strong>Conclusions: </strong>In this case, whole exome sequencing proves to be highly practical in daily healthcare for diagnosing and refining rare or ultra-rare diseases with ambiguous phenotypes or genetic diversity. It is also valuable for prognostic evaluation and personalized management. Additionally, the oral vitamin B12 treatment demonstrated positive clinical effects for the child, offering a new option for patients unable to undergo intramuscular vitamin B12 replacement therapy.</p>","PeriodicalId":14511,"journal":{"name":"Italian Journal of Pediatrics","volume":"50 1","pages":"191"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13052-024-01757-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Imerslund-Gräsbeck syndrome (IGS) is an autosomal recessive disorder characterized by selective vitamin B12 malabsorption, resulting in vitamin B12 deficiency and impaired reabsorption of proximal tubular proteins.This case highlights a previously unidentified compound heterozygous variant in the Amnionless (AMN) gene that causes IGS syndrome and underscores the importance of long-term oral vitamin B12 replacement therapy in managing the condition.
Case presentation: In this retrospective analysis, we present the clinical data of a 3-year and 6-month-old female child diagnosed with IGS at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, in November 2018. The child was admitted to the hospital due to a history of anemia persisting for over a month. There was no previous significant medical history. The admission examination revealed megaloblastic anemia with proteinuria. Serum vitamin B12 levels were decreased, while folic acid and renal function were normal. The patient was diagnosed with megaloblastic anemia and started long-term oral vitamin B12 replacement therapy. Throughout the follow-up period, blood tests consistently showed normal results, while proteinuria persisted. In November 2019, the child and her parents underwent whole exome sequencing analysis, which revealed a novel compound heterozygous variant in the AMN gene: c.162 + 1G > A and c.922 C > T (p.Q308X) in the child, c.162 + 1G > A in the father, and c.922 C > T (p.Q308X) in the mother. Therefore, this child was further diagnosed with IGS.
Conclusions: In this case, whole exome sequencing proves to be highly practical in daily healthcare for diagnosing and refining rare or ultra-rare diseases with ambiguous phenotypes or genetic diversity. It is also valuable for prognostic evaluation and personalized management. Additionally, the oral vitamin B12 treatment demonstrated positive clinical effects for the child, offering a new option for patients unable to undergo intramuscular vitamin B12 replacement therapy.
期刊介绍:
Italian Journal of Pediatrics is an open access peer-reviewed journal that includes all aspects of pediatric medicine. The journal also covers health service and public health research that addresses primary care issues.
The journal provides a high-quality forum for pediatricians and other healthcare professionals to report and discuss up-to-the-minute research and expert reviews in the field of pediatric medicine. The journal will continue to develop the range of articles published to enable this invaluable resource to stay at the forefront of the field.
Italian Journal of Pediatrics, which commenced in 1975 as Rivista Italiana di Pediatria, provides a high-quality forum for pediatricians and other healthcare professionals to report and discuss up-to-the-minute research and expert reviews in the field of pediatric medicine. The journal will continue to develop the range of articles published to enable this invaluable resource to stay at the forefront of the field.