Elucidation of d-allulose recognition mechanism in ketose 3-epimerase.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of bioscience and bioengineering Pub Date : 2024-09-23 DOI:10.1016/j.jbiosc.2024.08.010
Masahiro Watanabe, Yusuke Nakamichi, Shohei Mine
{"title":"Elucidation of d-allulose recognition mechanism in ketose 3-epimerase.","authors":"Masahiro Watanabe, Yusuke Nakamichi, Shohei Mine","doi":"10.1016/j.jbiosc.2024.08.010","DOIUrl":null,"url":null,"abstract":"<p><p>d-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through d-fructose isomerization by ketose 3-epimerase (KEase). l-Ribulose 3-epimerase from Arthrobacterglobiformis (AgLRE) is one of the most important enzymes that produce d-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with d-allulose and d-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for d-allulose and d-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for d-allulose and d-fructose.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2024.08.010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

d-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through d-fructose isomerization by ketose 3-epimerase (KEase). l-Ribulose 3-epimerase from Arthrobacterglobiformis (AgLRE) is one of the most important enzymes that produce d-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with d-allulose and d-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for d-allulose and d-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for d-allulose and d-fructose.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明酮糖 3-酰亚胺酶中 d-阿洛糖的识别机制。
d-阿洛糖是一种具有多种营养功能的低热量甜味剂,可通过酮糖3-epimerase(KEase)的d-果糖异构化作用产生。来自球形节杆菌的l-核酮糖3-epimerase(AgLRE)是产生d-阿洛糖的最重要的酶之一,但其底物识别机制尚不清楚。本研究测定了 AgLRE 及其与 d-阿洛糖和 d-果糖复合物的晶体结构。底物结合后,活性位点入口周围的疏水残基向结合的底物移动。通过比较 AgLRE 和其他 KEase 的结构发现,底物结合残基并不是 AgLRE 对 d-阿洛糖和 d-果糖具有明显特异性的主要原因,活性位点口袋的疏水性才是影响底物识别的主要因素。特别是活性位点入口处的两个疏水区域是调节 AgLRE 底物识别的调节元件。这项研究为设计 AgLRE 以提高其对 d- 阿洛糖和 d-果糖的亲和力提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
期刊最新文献
Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases. Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process. Optimization of bacteriophage propagation in high-yield continuous culture (cellstat) meeting the constraints of industrial manufacturing processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1