Intracellular biliverdin dynamics during ferroptosis.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of biochemistry Pub Date : 2024-09-28 DOI:10.1093/jb/mvae067
Kazuma Nakajima, Hironari Nishizawa, Guan Chen, Shunichi Tsuge, Mie Yamanaka, Machi Kiyohara, Riko Irikura, Mitsuyo Matsumoto, Kozo Tanaka, Rei Narikawa, Kazuhiko Igarashi
{"title":"Intracellular biliverdin dynamics during ferroptosis.","authors":"Kazuma Nakajima, Hironari Nishizawa, Guan Chen, Shunichi Tsuge, Mie Yamanaka, Machi Kiyohara, Riko Irikura, Mitsuyo Matsumoto, Kozo Tanaka, Rei Narikawa, Kazuhiko Igarashi","doi":"10.1093/jb/mvae067","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a cell death mechanism mediated by iron-dependent lipid peroxidation. Although ferroptosis has garnered attention as a cancer-suppressing mechanism, there are still limited markers available for identifying ferroptotic cells or assessing their sensitivity to ferroptosis. The study focused on biliverdin, an endogenous reducing substance in cells, and examined the dynamics of intracellular biliverdin during ferroptosis using a biliverdin-binding cyanobacteriochrome. It was found that intracellular biliverdin decreases during ferroptosis and that this decrease is specific to ferroptosis among different forms of cell death. Furthermore, the feasibility of predicting sensitivity to ferroptosis by measuring intracellular biliverdin was demonstrated using a ferroptosis model induced by the re-expression of the transcription factor BACH1. These findings provide further insight into ferroptosis research and are expected to contribute to the development of cancer therapies that exploit ferroptosis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is a cell death mechanism mediated by iron-dependent lipid peroxidation. Although ferroptosis has garnered attention as a cancer-suppressing mechanism, there are still limited markers available for identifying ferroptotic cells or assessing their sensitivity to ferroptosis. The study focused on biliverdin, an endogenous reducing substance in cells, and examined the dynamics of intracellular biliverdin during ferroptosis using a biliverdin-binding cyanobacteriochrome. It was found that intracellular biliverdin decreases during ferroptosis and that this decrease is specific to ferroptosis among different forms of cell death. Furthermore, the feasibility of predicting sensitivity to ferroptosis by measuring intracellular biliverdin was demonstrated using a ferroptosis model induced by the re-expression of the transcription factor BACH1. These findings provide further insight into ferroptosis research and are expected to contribute to the development of cancer therapies that exploit ferroptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁蛋白沉积过程中细胞内胆绿素的动态变化
铁变态反应是由铁依赖性脂质过氧化介导的一种细胞死亡机制。尽管铁中毒作为一种抑制癌症的机制已引起人们的关注,但目前用于识别铁中毒细胞或评估其对铁中毒敏感性的标记物仍然有限。这项研究的重点是细胞中的内源性还原物质胆绿素,并利用一种与胆绿素结合的蓝细菌色素研究了铁氧化过程中细胞内胆绿素的动态。研究发现,细胞内胆绿素在铁中毒过程中会减少,而且这种减少是不同细胞死亡形式中铁中毒所特有的。此外,利用转录因子 BACH1 的再表达诱导的铁中毒模型,证明了通过测量细胞内胆红素来预测对铁中毒敏感性的可行性。这些发现为铁中毒研究提供了更深入的见解,预计将有助于开发利用铁中毒的癌症疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
期刊最新文献
Maintenance of the Golgi Ribbon Structure by the KASH Protein Jaw1. Cellular senescence: mechanisms and relevance to cancer and aging. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation program. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. Variations associated with neurodevelopmental disorders affect ARF1 function and cortical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1