Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-08-24 DOI:10.3390/jfb15090243
Hsin-Yu Liang, Wei-Keung Lee, Jui-Tsen Hsu, Jie-Yu Shih, Tien-Li Ma, Thi Thuy Tien Vo, Chiang-Wen Lee, Ming-Te Cheng, I-Ta Lee
{"title":"Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications.","authors":"Hsin-Yu Liang, Wei-Keung Lee, Jui-Tsen Hsu, Jie-Yu Shih, Tien-Li Ma, Thi Thuy Tien Vo, Chiang-Wen Lee, Ming-Te Cheng, I-Ta Lee","doi":"10.3390/jfb15090243","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090243","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨组织工程中的聚己内酯:支架制造和表面改性创新综述》。
随着三维打印等创新型支架制造技术的发展,骨组织工程取得了长足的进步。本综述侧重于通过结构改性提高聚己内酯(PCL)支架的性能,包括表面处理、孔隙结构调整以及加入羟基磷灰石(HA)等生物材料。这些改性旨在改善支架的构象、细胞行为和机械性能,特别强调间充质干细胞(MSCs)在骨再生中的作用。综述还探讨了整合纳米材料和氧化石墨烯(GO)的潜力,以进一步提高 PCL 支架的机械和生物性能。未来的研究方向包括优化支架结构和成分,以改善骨组织再生效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Strontium- and Copper-Doped Ceramic Granules in Bone Regeneration-Associated Cellular Processes. A Novel Graphene-Based Nanomaterial for the Development of a Pelvic Implant to Treat Pelvic Organ Prolapse. Spherical Shell Bioprinting to Produce Uniform Spheroids with Controlled Sizes. Correction: Jin et al. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J. Funct. Biomater. 2023, 14, 541. Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1