{"title":"Attractiveness, longevity, and release rates of multilure wafers for trapping males of the oriental fruit fly and melon fly (Diptera: Tephritidae).","authors":"Todd Shelly, Thomas Fezza, Peter Cook, Dylan Cook","doi":"10.1093/jisesa/ieae095","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B. dorsalis, traps are typically baited with liquid methyl eugenol (ME), and for Z. cucurbitae, traps are baited with liquid cue-lure (CL). Operating large-scale trapping networks is costly, consequently, there is much interest in identifying ways to maintain network sensitivity while reducing costs. One cost-cutting approach is the possibility of combining different male lures in the same dispenser, thus reducing the number of traps requiring servicing. The chief objective of this study was to compare captures of B. dorsalis and Z. cucurbitae males in Jackson traps baited with polymeric wafers impregnated with both ME and raspberry ketone (RK, a hydrolyzed form of CL) versus traps baited with liquid ME or CL freshly applied to cotton wicks. Captures were measured when the ME/RK wafers had been weathered for 12, 18, or 24 wk. Captures of B. dorsalis and Z. cucurbitae males were similar between fresh lure and weathered wafers over all trapping periods, with a single exception apparently due to the lessened potency of the associated killing agent. The residual amount and release rate of ME and RK from the wafers were also measured to examine possible relationships between wafer chemistry and trap catch. The possible implications of the present results to area-wide trapping programs are discussed.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae095","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B. dorsalis, traps are typically baited with liquid methyl eugenol (ME), and for Z. cucurbitae, traps are baited with liquid cue-lure (CL). Operating large-scale trapping networks is costly, consequently, there is much interest in identifying ways to maintain network sensitivity while reducing costs. One cost-cutting approach is the possibility of combining different male lures in the same dispenser, thus reducing the number of traps requiring servicing. The chief objective of this study was to compare captures of B. dorsalis and Z. cucurbitae males in Jackson traps baited with polymeric wafers impregnated with both ME and raspberry ketone (RK, a hydrolyzed form of CL) versus traps baited with liquid ME or CL freshly applied to cotton wicks. Captures were measured when the ME/RK wafers had been weathered for 12, 18, or 24 wk. Captures of B. dorsalis and Z. cucurbitae males were similar between fresh lure and weathered wafers over all trapping periods, with a single exception apparently due to the lessened potency of the associated killing agent. The residual amount and release rate of ME and RK from the wafers were also measured to examine possible relationships between wafer chemistry and trap catch. The possible implications of the present results to area-wide trapping programs are discussed.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.