{"title":"Molecular analysis of <i>SMN2, NAIP,</i> and <i>GTF2H2</i> gene deletions and relationships with clinical subtypes of spinal muscular atrophy.","authors":"Nilgun Karasu, Hamit Acer, Hilal Akalin, Burcu Turkgenc, Mikail Demir, Izem Olcay Sahin, Nuriye Gokce, Ayten Gulec, Asli Ciplakligil, Ayse Caglar Sarilar, Isa Cuce, Hakan Gumus, Huseyin Per, Mehmet Canpolat, Munis Dundar","doi":"10.1080/01677063.2024.2407332","DOIUrl":null,"url":null,"abstract":"<p><p>SMA (spinal muscular atrophy) is an autosomal recessive neuromuscular disease that causes muscle atrophy and weakness. SMA is diagnosed by a homozygous deletion in exon 7 of the <i>SMN1</i> gene. However, mutations in genes located in the SMA region, such as <i>SMN2</i>, <i>NAIP, SERF1,</i> and <i>GTF2H2,</i> may also contribute to the severity of the disease. Within our study's scope, 58 SMA patients who applied in 2018-2021 and 40 healthy controls were analyzed. The study retrospectively included the SMN1 and SMN2 copy numbers previously determined by the MLPA method. Then, <i>NAIP</i> gene analyses with the multiplex PCR method and <i>GTF2H2</i> gene analyses with the RFLP method were performed. There was a significant correlation (<i>p</i> = 0.00001) between <i>SMN2</i> copy numbers and SMA subtypes. Also, the <i>NAIP</i> gene (<i>p</i> = 0.01) and the <i>GTF2H2</i> gene (<i>p</i> = 0.0049) revealed a significant difference between healthy and SMA subjects, whereas the SMA subtypes indicated no significant differences. We detected a significant correlation between clinical subtypes and HFMSE scores in 32 pediatric SMA patients compared (<i>p</i> = 0.01). While pediatric patients with <i>GTF2H2</i> deletions demonstrated higher motor functions, and those with <i>NAIP</i> deletions demonstrated lower motor functions. In this study, we examined the relationship between <i>NAIP</i> and <i>GTF2H2</i>, called SMN region modifier genes, and the clinical severity of the disease in Turkish SMA patients. Despite its small scale, this research will benefit future investigations into the pathogenesis of SMA disease.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"1-10"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2024.2407332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
SMA (spinal muscular atrophy) is an autosomal recessive neuromuscular disease that causes muscle atrophy and weakness. SMA is diagnosed by a homozygous deletion in exon 7 of the SMN1 gene. However, mutations in genes located in the SMA region, such as SMN2, NAIP, SERF1, and GTF2H2, may also contribute to the severity of the disease. Within our study's scope, 58 SMA patients who applied in 2018-2021 and 40 healthy controls were analyzed. The study retrospectively included the SMN1 and SMN2 copy numbers previously determined by the MLPA method. Then, NAIP gene analyses with the multiplex PCR method and GTF2H2 gene analyses with the RFLP method were performed. There was a significant correlation (p = 0.00001) between SMN2 copy numbers and SMA subtypes. Also, the NAIP gene (p = 0.01) and the GTF2H2 gene (p = 0.0049) revealed a significant difference between healthy and SMA subjects, whereas the SMA subtypes indicated no significant differences. We detected a significant correlation between clinical subtypes and HFMSE scores in 32 pediatric SMA patients compared (p = 0.01). While pediatric patients with GTF2H2 deletions demonstrated higher motor functions, and those with NAIP deletions demonstrated lower motor functions. In this study, we examined the relationship between NAIP and GTF2H2, called SMN region modifier genes, and the clinical severity of the disease in Turkish SMA patients. Despite its small scale, this research will benefit future investigations into the pathogenesis of SMA disease.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms