Establishment of Star-edited Y1 cells as a novel in vitro functional assay for STAR.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of molecular endocrinology Pub Date : 2024-10-29 Print Date: 2024-11-01 DOI:10.1530/JME-24-0009
Takeshi Sato, Satoshi Narumi, Tetsushi Sakuma, Kazuhiro Shimura, Yosuke Ichihashi, Takashi Yamamoto, Tomohiro Ishii, Tomonobu Hasegawa
{"title":"Establishment of Star-edited Y1 cells as a novel in vitro functional assay for STAR.","authors":"Takeshi Sato, Satoshi Narumi, Tetsushi Sakuma, Kazuhiro Shimura, Yosuke Ichihashi, Takashi Yamamoto, Tomohiro Ishii, Tomonobu Hasegawa","doi":"10.1530/JME-24-0009","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic variants involving steroidogenic acute regulatory protein cause lipoid congenital adrenal hyperplasia, which is characterized by impaired steroidogenesis in the adrenal glands and gonads. Functional assessment of variant STAR proteins is necessary for an accurate genetic diagnosis. Ideally, steroidogenic cells should be used to assess the functionality of STAR proteins, but the presence of endogenous STARs in steroidogenic cells precludes such a method. Here, we generated Star-edited cells from steroidogenic Y1 mouse adrenocortical tumor cells by genome editing. Star-edited Y1 cells exhibited very low but measurable cAMP-dependent pregnenolone production. Furthermore, stimulation of the cAMP pathway for 2 weeks resulted in the formation of lipid droplets in the cytoplasm of Star-edited Y1 cells, which resembled the histology of the adrenal glands of patients with lipoid congenital adrenal hyperplasia. The steroidogenic defect of Star-edited Y1 cells can be restored by transient overexpression of mouse Star. We found that human STAR can also restore defective steroidogenesis in Star-edited Y1 cells, and we were able to construct a novel in vitro system to evaluate human STAR variants. Collectively, we established Star-edited Y1 cells that retain the steroidogenic pathway downstream of the Star protein. Star-edited Y1 cells recapitulate the functional and morphological changes of lipoid congenital adrenal hyperplasia and can be used to evaluate the functionality of human STAR variants.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-24-0009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic variants involving steroidogenic acute regulatory protein cause lipoid congenital adrenal hyperplasia, which is characterized by impaired steroidogenesis in the adrenal glands and gonads. Functional assessment of variant STAR proteins is necessary for an accurate genetic diagnosis. Ideally, steroidogenic cells should be used to assess the functionality of STAR proteins, but the presence of endogenous STARs in steroidogenic cells precludes such a method. Here, we generated Star-edited cells from steroidogenic Y1 mouse adrenocortical tumor cells by genome editing. Star-edited Y1 cells exhibited very low but measurable cAMP-dependent pregnenolone production. Furthermore, stimulation of the cAMP pathway for 2 weeks resulted in the formation of lipid droplets in the cytoplasm of Star-edited Y1 cells, which resembled the histology of the adrenal glands of patients with lipoid congenital adrenal hyperplasia. The steroidogenic defect of Star-edited Y1 cells can be restored by transient overexpression of mouse Star. We found that human STAR can also restore defective steroidogenesis in Star-edited Y1 cells, and we were able to construct a novel in vitro system to evaluate human STAR variants. Collectively, we established Star-edited Y1 cells that retain the steroidogenic pathway downstream of the Star protein. Star-edited Y1 cells recapitulate the functional and morphological changes of lipoid congenital adrenal hyperplasia and can be used to evaluate the functionality of human STAR variants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立星编辑 Y1 细胞,作为 STAR 的新型体外功能测试。
涉及类固醇生成急性调节蛋白的基因变异会导致类脂性先天性肾上腺皮质增生症,其特点是肾上腺和性腺的类固醇生成功能受损。对变异 STAR 蛋白进行功能评估是准确进行遗传诊断的必要条件。理想情况下,应使用类固醇生成细胞来评估 STAR 蛋白的功能,但类固醇生成细胞中内源性 STAR 的存在排除了这种方法。在这里,我们通过基因组编辑技术从产生甾体的Y1小鼠肾上腺皮质肿瘤细胞中生成了Star编辑细胞。经 Star 编辑的 Y1 细胞的 cAMP 依赖性孕烯醇酮产量很低,但可以测量。此外,刺激 cAMP 通路两周后,Star-编辑的 Y1 细胞的细胞质中会形成脂滴,这与类脂性先天性肾上腺增生症患者的肾上腺组织结构相似。通过瞬时过度表达小鼠的Star,可以恢复Star编辑的Y1细胞的类固醇生成缺陷。我们发现,人 STAR 也能恢复 Star-edited Y1 细胞的类固醇生成缺陷,并构建了一个新的体外系统来评估人 STAR 变体。总之,我们建立的星编辑 Y1 细胞保留了星蛋白下游的类固醇生成途径。星形编辑的Y1细胞再现了类脂性先天性肾上腺皮质增生症的功能和形态变化,可用于评估人类STAR变体的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
期刊最新文献
Emerging roles of osteocytes in the regulation of bone and skeletal muscle mass. The role of mu-opioid receptors in pancreatic islet α-cells. Syndecans modulate ghrelin receptor signaling. Continuing the success of Journal of Endocrinology and Journal of Molecular Endocrinology: Editor-in-Chief handover. ATF3 suppresses 3T3-L1 adipocyte adipogenesis via transcriptional repressing USP53.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1