Relationship Between Resultant Force Vector Acting on Human Organs From Food Bolus and the Bolus Configuration During Swallowing Using Numerical Swallowing Simulation With Moving Particle Simulation Method
{"title":"Relationship Between Resultant Force Vector Acting on Human Organs From Food Bolus and the Bolus Configuration During Swallowing Using Numerical Swallowing Simulation With Moving Particle Simulation Method","authors":"Tetsu Kamiya, Yoshio Toyama, Keigo Hanyu, Takahiro Kikuchi, Yukihiro Michiwaki","doi":"10.1111/jtxs.12868","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the forces exerted on organs during swallowing, specifically focusing on identifying forces other than those resulting from direct organ contact. Using a swallowing simulator based on the moving particle method, we simulated the swallowing process of healthy individuals upon the ingestion of thickened foods, which were simulated as shear-thinning flow without yield stress. We extracted the resultant force vectors acting on the organs and shape of the bolus at each time interval. The simulation results confirmed that the bolus originates from tongue movement and is transferred between the oral cavity and pharynx, with each organ's coordinated movements with the tongue occurring at their respective positions, as indicated by the balance of the resultant force vectors. Utilizing the information about the resultant force vectors obtained through simulations, we calculated the physical parameters of impulse, energy, and power. The variations in these physical parameters were aligned with the behaviors of both the biological system and the food bolus during swallowing. The force values calculated from the simulations closely approximate the theoretical values. Furthermore, the forces calculated from the simulations were relatively smaller than the force values derived from pressure information, such as that from high-resolution manometry and tongue pressure sensors. This difference can be attributed to the simulations extracting only the forces exerted on the organ by the food bolus. Force information on organs has the potential to provide a new interpretation of conventional mechanical indicators such as manometry and tongue pressure sensors.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12868","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12868","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the forces exerted on organs during swallowing, specifically focusing on identifying forces other than those resulting from direct organ contact. Using a swallowing simulator based on the moving particle method, we simulated the swallowing process of healthy individuals upon the ingestion of thickened foods, which were simulated as shear-thinning flow without yield stress. We extracted the resultant force vectors acting on the organs and shape of the bolus at each time interval. The simulation results confirmed that the bolus originates from tongue movement and is transferred between the oral cavity and pharynx, with each organ's coordinated movements with the tongue occurring at their respective positions, as indicated by the balance of the resultant force vectors. Utilizing the information about the resultant force vectors obtained through simulations, we calculated the physical parameters of impulse, energy, and power. The variations in these physical parameters were aligned with the behaviors of both the biological system and the food bolus during swallowing. The force values calculated from the simulations closely approximate the theoretical values. Furthermore, the forces calculated from the simulations were relatively smaller than the force values derived from pressure information, such as that from high-resolution manometry and tongue pressure sensors. This difference can be attributed to the simulations extracting only the forces exerted on the organ by the food bolus. Force information on organs has the potential to provide a new interpretation of conventional mechanical indicators such as manometry and tongue pressure sensors.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing