Cellular stress and epigenetic regulation in adult stem cells.

IF 3.3 2区 生物学 Q1 BIOLOGY Life Science Alliance Pub Date : 2024-09-30 Print Date: 2024-12-01 DOI:10.26508/lsa.202302083
Joey Llewellyn, Rithvik Baratam, Luka Culig, Isabel Beerman
{"title":"Cellular stress and epigenetic regulation in adult stem cells.","authors":"Joey Llewellyn, Rithvik Baratam, Luka Culig, Isabel Beerman","doi":"10.26508/lsa.202302083","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成体干细胞中的细胞压力和表观遗传调控。
干细胞是一类独特的细胞,具有分化和自我更新能力,能够修复和补充组织。为了保护和维持干细胞的潜能,细胞和细胞周围的环境(干细胞龛)需要高度响应和严格调节。然而,各种压力会影响干细胞及其龛位。这些压力既有系统性的,也有细胞性的,可能来自内在因素,也可能来自外在因素。因此,了解细胞压力所涉及的各种驱动因素,即表观遗传学改变,对于开发旨在维持干细胞健康和组织稳态的干预措施非常重要。在这篇综述中,我们总结了已发表的关于各类成体干细胞对复制、氧化、机械和炎症压力的表观遗传学反应的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
期刊最新文献
Cryo-EM structures reveal the H+/citrate symport mechanism of Drosophila INDY. Human genetic variants in SLC39A8 impact uptake and steady-state metal levels within the cell. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Gastric cancer genomics study using reference human pangenomes. High-resolution analysis of human centromeric chromatin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1