Valorization of the Invasive Blue Crabs (Callinectes sapidus) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2024-09-23 DOI:10.3390/md22090430
Rosaria Arena, Giuseppe Renda, Giovanna Ottaviani Aalmo, Frédéric Debeaufort, Concetta Maria Messina, Andrea Santulli
{"title":"Valorization of the Invasive Blue Crabs (<i>Callinectes sapidus</i>) in the Mediterranean: Nutritional Value, Bioactive Compounds and Sustainable By-Products Utilization.","authors":"Rosaria Arena, Giuseppe Renda, Giovanna Ottaviani Aalmo, Frédéric Debeaufort, Concetta Maria Messina, Andrea Santulli","doi":"10.3390/md22090430","DOIUrl":null,"url":null,"abstract":"<p><p>The blue crab (<i>Callinectes sapidus</i>), originally from the western Atlantic Ocean, has recently spread to the Mediterranean and is now considered one of the one hundred most invasive species in that region. This opportunistic species, known for its adaptability to different temperatures and salinities, negatively impacts biodiversity and human activities such as fishing and tourism in the Mediterranean. However, the blue crab is gaining interest as a potential food resource due to its high nutritional value and delicate, sweet flavor. Its meat is rich in protein (14% to 30%), omega-3 fatty acids (EPA and DHA) and other essential nutrients beneficial for human health such as vitamins, and minerals. Utilizing this species in the production of new foods could help mitigate the negative impact of its invasiveness and offer economic opportunities. One challenge with this potential resource is the generation of waste. Approximately 6-8 million tonnes of crab shells are produced worldwide each year, leading to disposal problems and concerns regarding environmental sustainability. To improve economic and environmental sustainability, there is a need to valorize these residues, which are an important source of proteins, lipids, chitin, minerals, and pigments that can be processed into high-value-added products. However, especially in areas with industrial pollution, attention should be paid to the heavy metal (Cd and As) contents of blue crab shells. Studies suggest that blue crab by-products can be used in various sectors, reducing environmental impacts, promoting a circular economy, and creating new industrial opportunities.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 9","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22090430","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The blue crab (Callinectes sapidus), originally from the western Atlantic Ocean, has recently spread to the Mediterranean and is now considered one of the one hundred most invasive species in that region. This opportunistic species, known for its adaptability to different temperatures and salinities, negatively impacts biodiversity and human activities such as fishing and tourism in the Mediterranean. However, the blue crab is gaining interest as a potential food resource due to its high nutritional value and delicate, sweet flavor. Its meat is rich in protein (14% to 30%), omega-3 fatty acids (EPA and DHA) and other essential nutrients beneficial for human health such as vitamins, and minerals. Utilizing this species in the production of new foods could help mitigate the negative impact of its invasiveness and offer economic opportunities. One challenge with this potential resource is the generation of waste. Approximately 6-8 million tonnes of crab shells are produced worldwide each year, leading to disposal problems and concerns regarding environmental sustainability. To improve economic and environmental sustainability, there is a need to valorize these residues, which are an important source of proteins, lipids, chitin, minerals, and pigments that can be processed into high-value-added products. However, especially in areas with industrial pollution, attention should be paid to the heavy metal (Cd and As) contents of blue crab shells. Studies suggest that blue crab by-products can be used in various sectors, reducing environmental impacts, promoting a circular economy, and creating new industrial opportunities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地中海入侵蓝蟹(Callinectes sapidus)的价值:营养价值、生物活性化合物和可持续副产品利用。
蓝蟹(Callinectes sapidus)原产于大西洋西部,最近蔓延到地中海,现在被认为是该地区百大入侵物种之一。这种机会主义物种以适应不同温度和盐度而闻名,对地中海地区的生物多样性以及渔业和旅游业等人类活动造成了负面影响。不过,由于蓝蟹营养价值高、味道细腻甜美,它作为一种潜在的食物资源正受到越来越多的关注。其肉质富含蛋白质(14%-30%)、欧米加-3 脂肪酸(EPA 和 DHA)以及其他有益人体健康的必需营养素,如维生素和矿物质。利用该物种生产新食品有助于减轻其入侵带来的负面影响,并提供经济机会。这一潜在资源面临的一个挑战是废物的产生。全世界每年大约生产 600-800 万吨蟹壳,这导致了处理问题和对环境可持续性的担忧。为了提高经济和环境的可持续性,有必要对这些残留物进行估值,因为它们是蛋白质、脂类、甲壳素、矿物质和色素的重要来源,可以加工成高附加值产品。然而,特别是在有工业污染的地区,应注意青蟹壳中的重金属(镉和砷)含量。研究表明,青蟹副产品可用于不同领域,减少对环境的影响,促进循环经济,并创造新的产业机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Characterization of Phytoplankton-Derived Amino Acids and Tracing the Source of Organic Carbon Using Stable Isotopes in the Amundsen Sea. Discovery of Anti-Inflammatory Alkaloids from Sponge Stylissa massa Suggests New Biosynthetic Pathways for Pyrrole-Imidazole Alkaloids. Talaroterpenoids A-F: Six New Seco-Terpenoids from the Marine-Derived Fungus Talaromyces aurantiacus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1