Effects of aerobic exercise on demyelination and brain morphology in the cuprizone rat model of multiple sclerosis.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-01 Epub Date: 2024-09-28 DOI:10.1007/s11011-024-01377-w
Maryam Abbasi, Hadis Arghavanfar, Sepideh Hajinasab, Aref Nooraei
{"title":"Effects of aerobic exercise on demyelination and brain morphology in the cuprizone rat model of multiple sclerosis.","authors":"Maryam Abbasi, Hadis Arghavanfar, Sepideh Hajinasab, Aref Nooraei","doi":"10.1007/s11011-024-01377-w","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that led to brain atrophy. The purpose of this study was to investigate the effects of pre-and post-conditioning with exercise on demyelination and brain morphology. Thirty male rats were randomly divided into five groups (n = 6 per group), consisting of a healthy control group (Control), an MS group, and three exercise groups: the group that performed the exercise protocol (running on a treadmill 5 days/week for 6 weeks) before the MS induction (EX + MS), the group that performed the exercise protocol during the MS induction (MS + EX), and the group that performed the exercise protocol before and during the MS induction (EX + MS + EX). The expression of Myelin basic protein (MBP), and demyelination in the corpus callosum and the volume, weight, length, width, and height of the brain were measured. The EX + MS + EX showed a significant increase in the expression of MBP compared to other MS groups (**p < 0.01) as well as a significant decrease in the area of demyelination of the corpus callosum compared to MS and MS + EX groups (**p < 0.01). However, there were no significant differences between the MS group and exercised groups for brain morphology. The exercise showed neuroprotective effects, as evidenced by decreased areas of demyelination and improved MBP expression.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01377-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that led to brain atrophy. The purpose of this study was to investigate the effects of pre-and post-conditioning with exercise on demyelination and brain morphology. Thirty male rats were randomly divided into five groups (n = 6 per group), consisting of a healthy control group (Control), an MS group, and three exercise groups: the group that performed the exercise protocol (running on a treadmill 5 days/week for 6 weeks) before the MS induction (EX + MS), the group that performed the exercise protocol during the MS induction (MS + EX), and the group that performed the exercise protocol before and during the MS induction (EX + MS + EX). The expression of Myelin basic protein (MBP), and demyelination in the corpus callosum and the volume, weight, length, width, and height of the brain were measured. The EX + MS + EX showed a significant increase in the expression of MBP compared to other MS groups (**p < 0.01) as well as a significant decrease in the area of demyelination of the corpus callosum compared to MS and MS + EX groups (**p < 0.01). However, there were no significant differences between the MS group and exercised groups for brain morphology. The exercise showed neuroprotective effects, as evidenced by decreased areas of demyelination and improved MBP expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有氧运动对铜腙大鼠多发性硬化症模型脱髓鞘和大脑形态的影响
多发性硬化症(MS)是一种导致脑萎缩的中枢神经系统(CNS)慢性脱髓鞘疾病。本研究旨在探讨运动前后调节对脱髓鞘和大脑形态的影响。30只雄性大鼠被随机分为5组(每组6只),包括健康对照组(Control)、MS组和3个运动组:MS诱导前运动组(EX + MS)、MS诱导期间运动组(MS + EX)和MS诱导前及诱导期间运动组(EX + MS + EX)。研究人员测量了髓鞘碱性蛋白(MBP)的表达、胼胝体脱髓鞘情况以及大脑的体积、重量、长度、宽度和高度。与其他多发性硬化组相比,EX + MS + EX 组的髓鞘碱性蛋白(MBP)表达明显增加(**p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1