Daeun Lee, Minjeong Cho, Eunseo Kim, Youngbin Seo, Jong-Ho Cha
{"title":"PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders.","authors":"Daeun Lee, Minjeong Cho, Eunseo Kim, Youngbin Seo, Jong-Ho Cha","doi":"10.1016/j.ymthe.2024.09.026","DOIUrl":null,"url":null,"abstract":"<p><p>The PD-L1/PD-1 signaling pathway is the gold standard for cancer immunotherapy. Therapeutic antibodies targeting PD-1, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), and PD-L1, including atezolizumab (Tecentriq), durvalumab (Imfinzi), and avelumab (Bavencio) have received Food and Drug Administration approval and are currently being used to treat various cancers. Traditionally, PD-L1 is known as an immune checkpoint protein that binds to the PD-1 receptor on its surface to inhibit the activity of T cells, which are the primary effector cells in antitumor immunity. However, it also plays a role in cancer progression, which goes beyond traditional understanding. Here, we highlight the multifaceted mechanisms of action of PD-L1 in cancer cell proliferation, transcriptional regulation, and systemic immune suppression. Moreover, we consider the potential role of PD-L1 in the development and pathogenesis of diseases other than cancer, explore PD-L1-focused therapeutic approaches for these diseases, and assess their clinical relevance. Through this review, we hope to provide deeper insights into the PD-L1/PD-1 signaling pathway and present a broad perspective on potential therapeutic approaches for cancer and other diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4235-4255"},"PeriodicalIF":12.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.09.026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The PD-L1/PD-1 signaling pathway is the gold standard for cancer immunotherapy. Therapeutic antibodies targeting PD-1, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), and PD-L1, including atezolizumab (Tecentriq), durvalumab (Imfinzi), and avelumab (Bavencio) have received Food and Drug Administration approval and are currently being used to treat various cancers. Traditionally, PD-L1 is known as an immune checkpoint protein that binds to the PD-1 receptor on its surface to inhibit the activity of T cells, which are the primary effector cells in antitumor immunity. However, it also plays a role in cancer progression, which goes beyond traditional understanding. Here, we highlight the multifaceted mechanisms of action of PD-L1 in cancer cell proliferation, transcriptional regulation, and systemic immune suppression. Moreover, we consider the potential role of PD-L1 in the development and pathogenesis of diseases other than cancer, explore PD-L1-focused therapeutic approaches for these diseases, and assess their clinical relevance. Through this review, we hope to provide deeper insights into the PD-L1/PD-1 signaling pathway and present a broad perspective on potential therapeutic approaches for cancer and other diseases.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.