A systematic review of single nucleotide polymorphisms affecting allopurinol pharmacokinetics and serum uric acid level.

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY Pharmacogenomics Pub Date : 2024-01-01 Epub Date: 2024-09-30 DOI:10.1080/14622416.2024.2403969
Farah Aida A Zairol Azwan, Yi Ying Teo, Nor Asyikin Mohd Tahir, Shamin Mohd Saffian, Mohd Makmor-Bakry, Mohd Shahrir Mohamed Said
{"title":"A systematic review of single nucleotide polymorphisms affecting allopurinol pharmacokinetics and serum uric acid level.","authors":"Farah Aida A Zairol Azwan, Yi Ying Teo, Nor Asyikin Mohd Tahir, Shamin Mohd Saffian, Mohd Makmor-Bakry, Mohd Shahrir Mohamed Said","doi":"10.1080/14622416.2024.2403969","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To summarize the effects of single nucleotide polymorphisms (SNPs) on the pharmacokinetics of allopurinol to control uric acid levels.<b>Methods:</b> A comprehensive search was conducted in PubMed, Web of Science and Scopus databases from inception to January 2024, includes 17 articles focusing on SNPs and pharmacokinetics of allopurinol and oxypurinol.<b>Results:</b> A total of 11 SNPs showed a significant association with pharmacokinetics of allopurinol and oxypurinol, as well as their potential clinical implications.<b>Conclusion:</b> SNPs in ATP-binding cassette super-family G member 2 (<i>ABCG2</i>), solute carrier family 2 member 9 (<i>SLC2A9</i>), solute carrier family 17 member 1 (<i>SLC17A1</i>), solute carrier family 22 member 12 (<i>SLC22A12</i>), solute carrier family 22 member 13 (<i>SLC22A13</i>) and PDZ domain containing 1 (<i>PDZK1</i>) genes were associated with allopurinol clearance, while SNPs in aldehyde oxidase 1 (<i>AOX1</i>) genes involved in metabolism of allopurinol. SNPs in gremlin 2, DAN family BMP antagonist (<i>GREM2</i>) gene impacted uric acid control, but the specific mechanism governing the expression of <i>GREM2</i> remains unknown. Our study indicated that the identified SNPs show contradictory effects, reflecting inconsistencies and differences observed across various studies.</p>","PeriodicalId":20018,"journal":{"name":"Pharmacogenomics","volume":" ","pages":"479-494"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14622416.2024.2403969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To summarize the effects of single nucleotide polymorphisms (SNPs) on the pharmacokinetics of allopurinol to control uric acid levels.Methods: A comprehensive search was conducted in PubMed, Web of Science and Scopus databases from inception to January 2024, includes 17 articles focusing on SNPs and pharmacokinetics of allopurinol and oxypurinol.Results: A total of 11 SNPs showed a significant association with pharmacokinetics of allopurinol and oxypurinol, as well as their potential clinical implications.Conclusion: SNPs in ATP-binding cassette super-family G member 2 (ABCG2), solute carrier family 2 member 9 (SLC2A9), solute carrier family 17 member 1 (SLC17A1), solute carrier family 22 member 12 (SLC22A12), solute carrier family 22 member 13 (SLC22A13) and PDZ domain containing 1 (PDZK1) genes were associated with allopurinol clearance, while SNPs in aldehyde oxidase 1 (AOX1) genes involved in metabolism of allopurinol. SNPs in gremlin 2, DAN family BMP antagonist (GREM2) gene impacted uric acid control, but the specific mechanism governing the expression of GREM2 remains unknown. Our study indicated that the identified SNPs show contradictory effects, reflecting inconsistencies and differences observed across various studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响别嘌醇药代动力学和血清尿酸水平的单核苷酸多态性系统综述。
目的:总结单核苷酸多态性(SNPs)对控制尿酸水平的别嘌醇药代动力学的影响:方法:在PubMed、Web of Science和Scopus数据库中进行了全面检索,从开始到2024年1月,包括17篇关于SNPs与别嘌醇和奥昔嘌醇药代动力学的文章:结果:共有11个SNPs与别嘌呤醇和奥昔嘌呤醇的药代动力学及其潜在的临床意义有显著关联:溶质运载家族 22 成员 13 (SLC22A13) 和 PDZ domain containing 1 (PDZK1) 基因中的 SNP 与别嘌醇清除率相关,而醛氧化酶 1 (AOX1) 基因中的 SNP 则参与别嘌醇的代谢。格雷姆林 2、DAN 家族 BMP 拮抗剂(GREM2)基因中的 SNP 影响尿酸的控制,但 GREM2 表达的具体机制仍不清楚。我们的研究表明,已确定的 SNPs 显示出相互矛盾的影响,反映了不同研究中观察到的不一致和差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacogenomics
Pharmacogenomics 医学-药学
CiteScore
3.40
自引率
9.50%
发文量
88
审稿时长
4-8 weeks
期刊介绍: Pharmacogenomics (ISSN 1462-2416) is a peer-reviewed journal presenting reviews and reports by the researchers and decision-makers closely involved in this rapidly developing area. Key objectives are to provide the community with an essential resource for keeping abreast of the latest developments in all areas of this exciting field. Pharmacogenomics is the leading source of commentary and analysis, bringing you the highest quality expert analyses from corporate and academic opinion leaders in the field.
期刊最新文献
Advancing pharmacogenomics research: automated extraction of insights from PubMed using SpaCy NLP framework. Effect of UGT1A6 and UGT2B7 polymorphisms on the valproic acid serum concentration and drug-induced liver injury. Impact of genetic variants on fentanyl metabolism in major breast surgery patients: a candidate gene association study. PPARA variant rs1800234 had a dose dependent pharmacogenetics impact on the therapeutic response to chiglitazar. Hydroxychloroquine-induced acute generalized exanthematous pustulosis with HLA-typing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1