{"title":"Investigation of bioactive components and metabolic pathways of Zhen-wu-tang in rat plasma and renal tissue by UPLC-Q-TOF/MS.","authors":"Shengliang Yuan, Junqi Chen, Yiwen Cao, Huan Zhao, Shuyin Lin, Jingli Xiong, Jiayue Xian, Minglan Zhao, Yuan Zhou, Jiuyao Zhou","doi":"10.1002/pca.3455","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Zhen-wu-tang (ZWT) is a traditional Chinese medicine (TCM) formula for the treatment of several kidney diseases. However, due to the complexity of the TCM formula, there is a lack of accurate knowledge of the chemical constituents of ZWT and its bioactive components, as well as in vivo metabolic pathway studies.</p><p><strong>Objectives: </strong>The chemical composition of ZWT and its bioactive components along with the metabolic pathways were investigated by a combination of chemical profiling and serum pharmacochemistry.</p><p><strong>Methods: </strong>High-resolution ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to identify the chemical components of ZWT and its bioactive components and metabolites in vivo.</p><p><strong>Results: </strong>As a result, a total of 110 chemical components were identified from ZWT solution, mainly amino acids, alkaloids, gingerols, monoterpene glycosides and terpenoids, and so on. In addition, 24 prototype components and 36 metabolites were detected in rat plasma. Meanwhile, 8 prototype components were detected in rat kidney tissue but no metabolites. Interestingly, 4 of the 28 bioactive components were detected in both plasma and renal tissue, which were atractylenolide III, trimethoxyaconitane, methyl gallate, and paeoniflorin. The metabolic pathways mainly involved Phases I and/or II metabolic reactions such as hydrolysis, oxidation, reduction and hydration, methylation/demethylation, sulphation, glucuronidation, acetylation, and glutathione conjugation.</p><p><strong>Conclusion: </strong>Overall, the present study has comprehensively elucidated the chemical composition of ZWT and its potential bioactive components and metabolites, which provides a basis for the basic study of its pharmacodynamic substances and a reference for the study of the bioactive components of TCM formulae.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3455","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Zhen-wu-tang (ZWT) is a traditional Chinese medicine (TCM) formula for the treatment of several kidney diseases. However, due to the complexity of the TCM formula, there is a lack of accurate knowledge of the chemical constituents of ZWT and its bioactive components, as well as in vivo metabolic pathway studies.
Objectives: The chemical composition of ZWT and its bioactive components along with the metabolic pathways were investigated by a combination of chemical profiling and serum pharmacochemistry.
Methods: High-resolution ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to identify the chemical components of ZWT and its bioactive components and metabolites in vivo.
Results: As a result, a total of 110 chemical components were identified from ZWT solution, mainly amino acids, alkaloids, gingerols, monoterpene glycosides and terpenoids, and so on. In addition, 24 prototype components and 36 metabolites were detected in rat plasma. Meanwhile, 8 prototype components were detected in rat kidney tissue but no metabolites. Interestingly, 4 of the 28 bioactive components were detected in both plasma and renal tissue, which were atractylenolide III, trimethoxyaconitane, methyl gallate, and paeoniflorin. The metabolic pathways mainly involved Phases I and/or II metabolic reactions such as hydrolysis, oxidation, reduction and hydration, methylation/demethylation, sulphation, glucuronidation, acetylation, and glutathione conjugation.
Conclusion: Overall, the present study has comprehensively elucidated the chemical composition of ZWT and its potential bioactive components and metabolites, which provides a basis for the basic study of its pharmacodynamic substances and a reference for the study of the bioactive components of TCM formulae.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.