An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2024-09-28 DOI:10.1186/s13007-024-01274-4
Cintia H D Sagawa, Geoffrey Thomson, Benoit Mermaz, Corina Vernon, Siqi Liu, Yannick Jacob, Vivian F Irish
{"title":"An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus.","authors":"Cintia H D Sagawa, Geoffrey Thomson, Benoit Mermaz, Corina Vernon, Siqi Liu, Yannick Jacob, Vivian F Irish","doi":"10.1186/s13007-024-01274-4","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"148"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01274-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柑橘中 CRISPR/Cas9 基因编辑的高效多重方法。
CRISPR/Cas9 介导的基因编辑需要高效率才能常规实施,特别是在转化费力、速度慢的物种中。当同时针对多个基因时,这一要求会进一步提高,而这正是基因筛选或更复杂的基因组工程所需要的。柑橘属的物种就属于这一类。在这里,我们描述了一系列实验,其共同目的是利用基于 tRNA 的 sgRNA 阵列改进 Carrizo citrange 栽培品种的多重基因编辑。我们评估了一系列启动子在此类实验中的功效,并通过优化 Cas9 内切酶和 sgRNA 阵列的表达实现了显著的改进。对于前者,我们发现来自拟南芥的 UBQ10 或 RPS5a 启动子可以驱动 zCas9i 内切酶变体,从而实现高水平的编辑。表达 sgRNA 阵列的启动子的选择对多靶点基因编辑效率也有很大影响。在这方面,Pol III 启动子的表现尤为出色,但我们也证明拟南芥的 UBQ10 和 ES8Z 启动子是强有力的替代品。最终,这项研究提供了对 CRISPR/Cas9 载体设计的定量洞察,可实际应用于同时编辑柑橘类以及潜在的其他桉科植物物种的多个基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
AI-powered detection and quantification of post-harvest physiological deterioration (PPD) in cassava using YOLO foundation models and K-means clustering. An innovative natural speed breeding technique for accelerated chickpea (Cicer arietinum L.) generation turnover. Strategy for early selection for grain yield in soybean using BLUPIS. Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1