Temperature stabilization of a lab space at 10 mK-level over a day.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-01 DOI:10.1063/5.0213133
Dylan Fife, Dong-Chel Shin, Vivishek Sudhir
{"title":"Temperature stabilization of a lab space at 10 mK-level over a day.","authors":"Dylan Fife, Dong-Chel Shin, Vivishek Sudhir","doi":"10.1063/5.0213133","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature fluctuations over long time scales (≳ 1 h) are an insidious problem for precision measurements. In optical laboratories, the primary effect of temperature fluctuations is drifts in optical circuits over spatial scales of a few meters and temporal scales extending beyond a few minutes. We present a lab-scale environment temperature control system approaching 10 mK-level temperature instability across a lab for integration times above an hour and extending to a day. This is achieved by passive isolation of the laboratory space from the building walls using a circulating air gap and an active control system feeding back to heating coils at the outlet of the laboratory's Heating-Ventilation-Air-Conditioning (HVAC) unit. These techniques together result in 20 dB suppression of the temperature power spectrum across the lab at 10-4 Hz-approaching the limit set by statistical coherence of the temperature field-and 10 mK Allan deviation around 15 °C after an hour of averaging, which is an order of magnitude better than any previous report for a full laboratory.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0213133","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature fluctuations over long time scales (≳ 1 h) are an insidious problem for precision measurements. In optical laboratories, the primary effect of temperature fluctuations is drifts in optical circuits over spatial scales of a few meters and temporal scales extending beyond a few minutes. We present a lab-scale environment temperature control system approaching 10 mK-level temperature instability across a lab for integration times above an hour and extending to a day. This is achieved by passive isolation of the laboratory space from the building walls using a circulating air gap and an active control system feeding back to heating coils at the outlet of the laboratory's Heating-Ventilation-Air-Conditioning (HVAC) unit. These techniques together result in 20 dB suppression of the temperature power spectrum across the lab at 10-4 Hz-approaching the limit set by statistical coherence of the temperature field-and 10 mK Allan deviation around 15 °C after an hour of averaging, which is an order of magnitude better than any previous report for a full laboratory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将实验室空间的温度稳定在 10 mK 级,持续一天。
长时间(≳ 1 小时)的温度波动是精密测量的一个隐患。在光学实验室中,温度波动的主要影响是光路在几米的空间尺度和超过几分钟的时间尺度上的漂移。我们介绍了一种实验室规模的环境温度控制系统,其温度不稳定性接近整个实验室 10 mK 的水平,整合时间超过一小时并延长至一天。这是通过使用循环空气间隙将实验室空间与建筑墙壁被动隔离,以及将主动控制系统反馈到实验室供暖-通风-空调(HVAC)装置出口处的加热盘管来实现的。这些技术共同作用的结果是,在 10-4 Hz 频率下,整个实验室的温度功率谱被抑制了 20 dB,接近温度场统计相干性所设定的极限,并且在平均一小时后,15 °C左右的阿伦偏差为 10 mK,这比以往任何完整实验室的报告都要好一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1