{"title":"Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2022 and 2023","authors":"Paul Barrow","doi":"10.1016/j.reprotox.2024.108727","DOIUrl":null,"url":null,"abstract":"<div><div>92 novel drugs were approved by the FDA in 2022–2023. 48 of these approvals were for orphan indications. Embryofetal development (EFD) studies were conducted for 79 % of approvals. Rats and rabbits were the most common species used (77 % and 62 % of studies, respectively). For the testing of biopharmaceuticals, rodents were more often used (43 % of EFD studies) than non-human primates (29 %) and rabbits (29 %). Most (75 %) biopharmaceuticals intended to treat cancer were approved without EFD studies. Amongst the 41 drugs for which both rat and rabbit EFD studies were performed, the rabbit appeared more sensitive to both maternal toxicity and developmental toxicity (61 % and 63 % of drugs, respectively). Most drugs (76 %) showed more than a 2-fold difference in the LOAEL for developmental toxicity between the rat and rabbit. EFD studies were not required for drugs with a mode of action known to pose a clear hazard for pregnancy and further EFD studies were generally not performed when clinically relevant developmental effects had already been observed in one species or in a preliminary EFD study. Many drug labels showed minor deviations from the PLLR rule: the metric used to calculate exposure margins and the presence or absence of maternal toxicity were not always specified. These omissions, however, are of little significance for the prescriber. The five reviews in this series now show compiled information on EFD studies for all small molecule pharmaceuticals approved since 2014 and for all therapeutic monoclonal antibodies approved to date.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"130 ","pages":"Article 108727"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623824001941","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
92 novel drugs were approved by the FDA in 2022–2023. 48 of these approvals were for orphan indications. Embryofetal development (EFD) studies were conducted for 79 % of approvals. Rats and rabbits were the most common species used (77 % and 62 % of studies, respectively). For the testing of biopharmaceuticals, rodents were more often used (43 % of EFD studies) than non-human primates (29 %) and rabbits (29 %). Most (75 %) biopharmaceuticals intended to treat cancer were approved without EFD studies. Amongst the 41 drugs for which both rat and rabbit EFD studies were performed, the rabbit appeared more sensitive to both maternal toxicity and developmental toxicity (61 % and 63 % of drugs, respectively). Most drugs (76 %) showed more than a 2-fold difference in the LOAEL for developmental toxicity between the rat and rabbit. EFD studies were not required for drugs with a mode of action known to pose a clear hazard for pregnancy and further EFD studies were generally not performed when clinically relevant developmental effects had already been observed in one species or in a preliminary EFD study. Many drug labels showed minor deviations from the PLLR rule: the metric used to calculate exposure margins and the presence or absence of maternal toxicity were not always specified. These omissions, however, are of little significance for the prescriber. The five reviews in this series now show compiled information on EFD studies for all small molecule pharmaceuticals approved since 2014 and for all therapeutic monoclonal antibodies approved to date.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.