{"title":"Deep learning in Cobb angle automated measurement on X-rays: a systematic review and meta-analysis.","authors":"Yuanpeng Zhu, Xiangjie Yin, Zefu Chen, Haoran Zhang, Kexin Xu, Jianguo Zhang, Nan Wu","doi":"10.1007/s43390-024-00954-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to provide an overview of different deep learning algorithms (DLAs), identify the limitations, and summarize potential solutions to improve the performance of DLAs.</p><p><strong>Methods: </strong>We reviewed eligible studies on DLAs for automated Cobb angle estimation on X-rays and conducted a meta-analysis. A systematic literature search was conducted in six databases up until September 2023. Our meta-analysis included an evaluation of reported circular mean absolute error (CMAE) from the studies, as well as a subgroup analysis of implementation strategies. Risk of bias was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). This study was registered in PROSPERO prior to initiation (CRD42023403057).</p><p><strong>Results: </strong>We identified 120 articles from our systematic search (n = 3022), eventually including 50 studies in the systematic review and 17 studies in the meta-analysis. The overall estimate for CMAE was 2.99 (95% CI 2.61-3.38), with high heterogeneity (94%, p < 0.01). Segmentation-based methods showed greater accuracy (p < 0.01), with a CMAE of 2.40 (95% CI 1.85-2.95), compared to landmark-based methods, which had a CMAE of 3.31 (95% CI 2.89-3.72).</p><p><strong>Conclusions: </strong>According to our limited meta-analysis results, DLAs have shown relatively high accuracy for automated Cobb angle measurement. In terms of CMAE, segmentation-based methods may perform better than landmark-based methods. We also summarized potential ways to improve model design in future studies. It is important to follow quality guidelines when reporting on DLAs.</p>","PeriodicalId":21796,"journal":{"name":"Spine deformity","volume":" ","pages":"19-27"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine deformity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43390-024-00954-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to provide an overview of different deep learning algorithms (DLAs), identify the limitations, and summarize potential solutions to improve the performance of DLAs.
Methods: We reviewed eligible studies on DLAs for automated Cobb angle estimation on X-rays and conducted a meta-analysis. A systematic literature search was conducted in six databases up until September 2023. Our meta-analysis included an evaluation of reported circular mean absolute error (CMAE) from the studies, as well as a subgroup analysis of implementation strategies. Risk of bias was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). This study was registered in PROSPERO prior to initiation (CRD42023403057).
Results: We identified 120 articles from our systematic search (n = 3022), eventually including 50 studies in the systematic review and 17 studies in the meta-analysis. The overall estimate for CMAE was 2.99 (95% CI 2.61-3.38), with high heterogeneity (94%, p < 0.01). Segmentation-based methods showed greater accuracy (p < 0.01), with a CMAE of 2.40 (95% CI 1.85-2.95), compared to landmark-based methods, which had a CMAE of 3.31 (95% CI 2.89-3.72).
Conclusions: According to our limited meta-analysis results, DLAs have shown relatively high accuracy for automated Cobb angle measurement. In terms of CMAE, segmentation-based methods may perform better than landmark-based methods. We also summarized potential ways to improve model design in future studies. It is important to follow quality guidelines when reporting on DLAs.
期刊介绍:
Spine Deformity the official journal of the?Scoliosis Research Society is a peer-refereed publication to disseminate knowledge on basic science and clinical research into the?etiology?biomechanics?treatment?methods and outcomes of all types of?spinal deformities. The international members of the Editorial Board provide a worldwide perspective for the journal's area of interest.The?journal?will enhance the mission of the Society which is to foster the optimal care of all patients with?spine?deformities worldwide. Articles published in?Spine Deformity?are Medline indexed in PubMed.? The journal publishes original articles in the form of clinical and basic research. Spine Deformity will only publish studies that have institutional review board (IRB) or similar ethics committee approval for human and animal studies and have strictly observed these guidelines. The minimum follow-up period for follow-up clinical studies is 24 months.