Effects of 5G radiofrequency electromagnetic radiation on indicators of vitality and DNA integrity of in vitro exposed boar semen

IF 2.4 2区 农林科学 Q3 REPRODUCTIVE BIOLOGY Theriogenology Pub Date : 2024-09-25 DOI:10.1016/j.theriogenology.2024.09.025
{"title":"Effects of 5G radiofrequency electromagnetic radiation on indicators of vitality and DNA integrity of in vitro exposed boar semen","authors":"","doi":"10.1016/j.theriogenology.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of radiofrequency electromagnetic radiation (RF-EMR) on semen quality have been in the spotlight in recent years, though research results to date have been contradictory. The effects of RF-EMR amongst others depend upon frequency, and there is currently no literature concerning the influence of 5G frequencies on both DNA integrity and spermatozoa vitality in males. The aim of this study was to investigate the effect of 5G RF-EMR on sperm membrane integrity, mitochondrial potential, and DNA integrity of <em>in vitro</em> exposed semen of breeding boars. The study included semen samples of eight breeding boars of the Pietren breed and four breeding boars of the German Landrace breed, from 1.5 to 3.5 years in age. Freshly diluted semen of each boar was divided into a control (n = 12) and experimental group (n = 12). The samples of the experimental group were exposed for 2 hours to continuous RF-EMR at a single frequency (700 MHz, 2500 MHz and 3500 MHz) and an electromagnetic field strength of 10 V/m using a transverse gigahertz electromagnetic cell. Sperm DNA fragmentation was assessed using a Halomax® kit and sperm membrane integrity and mitochondrial potential was assessed using a PI⁄SYBR-14 LIVE⁄DEAD viability kit with JC-1. A significantly higher proportion of spermatozoa with DNA fragmentation was found in exposed semen samples for all frequencies compared to the control group. The highest DNA damage was recorded in semen samples exposed to 5G RF-EMR at 2500 MHz (p &lt; 0.01) and 3500 MHz (p &lt; 0.05) <em>vs.</em> control semen samples. A significantly higher proportion of spermatozoa with damaged cell membrane and good mitochondrial potential was recorded in semen samples exposed with 3500 MHz. <em>In vitro</em> exposure of breading boar semen to 5G RF-EMR significantly increases the proportion of DNA fragmentation. The harmful effect of 5G RF-EMR on the proportion of spermatozoa with damaged DNA was frequency dependent. The 3500 MHz frequency displayed the most harmful effects due to significant impacts on DNA integrity and spermatozoa vitality indicators.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24003947","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of radiofrequency electromagnetic radiation (RF-EMR) on semen quality have been in the spotlight in recent years, though research results to date have been contradictory. The effects of RF-EMR amongst others depend upon frequency, and there is currently no literature concerning the influence of 5G frequencies on both DNA integrity and spermatozoa vitality in males. The aim of this study was to investigate the effect of 5G RF-EMR on sperm membrane integrity, mitochondrial potential, and DNA integrity of in vitro exposed semen of breeding boars. The study included semen samples of eight breeding boars of the Pietren breed and four breeding boars of the German Landrace breed, from 1.5 to 3.5 years in age. Freshly diluted semen of each boar was divided into a control (n = 12) and experimental group (n = 12). The samples of the experimental group were exposed for 2 hours to continuous RF-EMR at a single frequency (700 MHz, 2500 MHz and 3500 MHz) and an electromagnetic field strength of 10 V/m using a transverse gigahertz electromagnetic cell. Sperm DNA fragmentation was assessed using a Halomax® kit and sperm membrane integrity and mitochondrial potential was assessed using a PI⁄SYBR-14 LIVE⁄DEAD viability kit with JC-1. A significantly higher proportion of spermatozoa with DNA fragmentation was found in exposed semen samples for all frequencies compared to the control group. The highest DNA damage was recorded in semen samples exposed to 5G RF-EMR at 2500 MHz (p < 0.01) and 3500 MHz (p < 0.05) vs. control semen samples. A significantly higher proportion of spermatozoa with damaged cell membrane and good mitochondrial potential was recorded in semen samples exposed with 3500 MHz. In vitro exposure of breading boar semen to 5G RF-EMR significantly increases the proportion of DNA fragmentation. The harmful effect of 5G RF-EMR on the proportion of spermatozoa with damaged DNA was frequency dependent. The 3500 MHz frequency displayed the most harmful effects due to significant impacts on DNA integrity and spermatozoa vitality indicators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G 射频电磁辐射对体外暴露公猪精液活力指标和 DNA 完整性的影响。
近年来,射频电磁辐射(RF-EMR)对精液质量的影响一直是人们关注的焦点,但迄今为止的研究结果却相互矛盾。射频电磁辐射的影响取决于频率等因素,目前还没有关于 5G 频率对男性 DNA 完整性和精子活力影响的文献。本研究的目的是调查 5G 射频-电磁波对精子膜完整性、线粒体电位和体外暴露的种公猪精液 DNA 完整性的影响。研究包括 8 头皮特兰种公猪和 4 头德国兰德种公猪的精液样本,它们的年龄在 1.5 至 3.5 岁之间。每头公猪的新鲜稀释精液分为对照组(n = 12)和实验组(n = 12)。实验组的样本在单一频率(700 MHz、2500 MHz 和 3500 MHz)、电磁场强度为 10 V/m 的横向千兆赫电磁池中连续暴露 2 小时。使用 Halomax® 试剂盒对精子 DNA 碎片进行评估,使用 PI⁄SYBR-14 LIVE⁄DEAD 活力试剂盒和 JC-1 对精子膜完整性和线粒体电位进行评估。与对照组相比,暴露精液样本中出现 DNA 断裂的精子比例明显较高。暴露于 2500 MHz 的 5G 射频-EMR 的精液样本的 DNA 损伤程度最高(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theriogenology
Theriogenology 农林科学-生殖生物学
CiteScore
5.50
自引率
14.30%
发文量
387
审稿时长
72 days
期刊介绍: Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.
期刊最新文献
Dexamethasone and azithromycin enhance goat sperm preservation quality by regulating lipid metabolism Increased in vitro production of bovine embryos resulting from oocyte maturation in the presence of triciribine, a specific inhibitor of AKT NAGK regulates the onset of puberty in female mice Clinical trials of intratesticular administration of nanostructured lipid carriers encapsulated alpha-mangostin: Safety and efficacy on feline reproductive health Taste receptor T1R3 regulates testosterone synthesis via the cAMP-PKA-SP1 pathway in testicular Leydig cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1