Comparative analysis of single-cell pathway scoring methods and a novel approach.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-09-24 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae124
Ruoqiao H Wang, Juilee Thakar
{"title":"Comparative analysis of single-cell pathway scoring methods and a novel approach.","authors":"Ruoqiao H Wang, Juilee Thakar","doi":"10.1093/nargab/lqae124","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell gene set analysis (scGSA) provides a useful approach for quantifying molecular functions and pathways in high-throughput transcriptomic data, facilitating the biological interpretation of complex human datasets. However, various factors such as gene set size, quality of the gene sets and the dropouts impact the performance of scGSA. To address these limitations, we present a single-cell Pathway Score (scPS) method to measure gene set activity at single-cell resolution. Furthermore, we benchmark our method with six other methods: AUCell, AddModuleScore, JASMINE, UCell, SCSE and ssGSEA. The comparison across all the methods using two different simulation approaches highlights the effect of cell count, gene set size, noise, condition-specific genes and zero imputation on their performance. The results of our study indicate that the scPS is comparable with other single-cell scoring methods and detects fewer false positives. Importantly, this work reveals critical variables in the scGSA.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae124"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell gene set analysis (scGSA) provides a useful approach for quantifying molecular functions and pathways in high-throughput transcriptomic data, facilitating the biological interpretation of complex human datasets. However, various factors such as gene set size, quality of the gene sets and the dropouts impact the performance of scGSA. To address these limitations, we present a single-cell Pathway Score (scPS) method to measure gene set activity at single-cell resolution. Furthermore, we benchmark our method with six other methods: AUCell, AddModuleScore, JASMINE, UCell, SCSE and ssGSEA. The comparison across all the methods using two different simulation approaches highlights the effect of cell count, gene set size, noise, condition-specific genes and zero imputation on their performance. The results of our study indicate that the scPS is comparable with other single-cell scoring methods and detects fewer false positives. Importantly, this work reveals critical variables in the scGSA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞通路评分方法和一种新方法的比较分析。
单细胞基因组分析(scGSA)为量化高通量转录组数据中的分子功能和通路提供了一种有用的方法,有助于对复杂的人类数据集进行生物学解读。然而,基因组大小、基因组质量和丢失等各种因素都会影响 scGSA 的性能。为了解决这些局限性,我们提出了一种单细胞通路得分(scPS)方法,以单细胞分辨率测量基因组活性。此外,我们还将我们的方法与其他六种方法进行了比较:AUCell、AddModuleScore、JASMINE、UCell、SCSE 和 ssGSEA。通过使用两种不同的模拟方法对所有方法进行比较,突出了细胞数、基因组大小、噪声、条件特异性基因和零估算对其性能的影响。我们的研究结果表明,scPS 可与其他单细胞评分方法相媲美,而且检测到的假阳性较少。重要的是,这项工作揭示了 scGSA 中的关键变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1