Exploring prognostic biomarkers in pathological images of colorectal cancer patients via deep learning

IF 3.4 2区 医学 Q1 PATHOLOGY Journal of Pathology Clinical Research Pub Date : 2024-09-29 DOI:10.1002/2056-4538.70003
Binshen Wei, Linqing Li, Yenan Feng, Sihan Liu, Peng Fu, Lin Tian
{"title":"Exploring prognostic biomarkers in pathological images of colorectal cancer patients via deep learning","authors":"Binshen Wei,&nbsp;Linqing Li,&nbsp;Yenan Feng,&nbsp;Sihan Liu,&nbsp;Peng Fu,&nbsp;Lin Tian","doi":"10.1002/2056-4538.70003","DOIUrl":null,"url":null,"abstract":"<p>Hematoxylin and eosin (H&amp;E) whole slide images provide valuable information for predicting prognostic outcomes in colorectal cancer (CRC) patients. However, extracting prognostic indicators from pathological images is challenging due to the subtle complexities of phenotypic information. We trained a weakly supervised deep learning model on data from 640 CRC patients in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial dataset and validated it using data from 522 CRC patients in the cancer genome atlas (TCGA) dataset. We created the colorectal cancer risk score (CRCRS) to assess patient prognosis, visualized the pathological phenotype of the risk score using Grad-CAM, and employed multiomics data from the TCGA CRC cohort to investigate the potential biological mechanisms underlying the risk score. The overall survival analysis revealed that the CRCRS served as an independent prognostic indicator for both the PLCO cohort (<i>p</i> &lt; 0.001) and the TCGA cohort (<i>p</i> &lt; 0.001), with its predictive efficacy remaining unaffected by the clinical staging system. Additionally, satisfactory chemotherapeutic benefits were observed in stage II/III CRC patients with high CRCRS but not in those with low CRCRS. A pathomics nomogram constructed by integrating the CRCRS with the tumor-node-metastasis (TNM) staging system enhanced prognostic prediction accuracy compared with using the TNM staging system alone. Noteworthy features of the risk score were identified, such as immature tumor mesenchyme, disorganized gland structures, small clusters of cancer cells associated with unfavorable prognosis, and infiltrating inflammatory cells associated with favorable prognosis. The TCGA multiomics data revealed potential correlations between the CRCRS and the activation of energy production and metabolic pathways, the tumor immune microenvironment, and genetic mutations in <i>APC</i>, <i>SMAD2</i>, <i>EEF1AKMT4</i>, <i>EPG5</i>, and <i>TANC1</i>. In summary, our deep learning algorithm identified the CRCRS as a prognostic indicator in CRC, providing a significant approach for prognostic risk stratification and tailoring precise treatment strategies for individual patients.</p>","PeriodicalId":48612,"journal":{"name":"Journal of Pathology Clinical Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2056-4538.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Clinical Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2056-4538.70003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hematoxylin and eosin (H&E) whole slide images provide valuable information for predicting prognostic outcomes in colorectal cancer (CRC) patients. However, extracting prognostic indicators from pathological images is challenging due to the subtle complexities of phenotypic information. We trained a weakly supervised deep learning model on data from 640 CRC patients in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial dataset and validated it using data from 522 CRC patients in the cancer genome atlas (TCGA) dataset. We created the colorectal cancer risk score (CRCRS) to assess patient prognosis, visualized the pathological phenotype of the risk score using Grad-CAM, and employed multiomics data from the TCGA CRC cohort to investigate the potential biological mechanisms underlying the risk score. The overall survival analysis revealed that the CRCRS served as an independent prognostic indicator for both the PLCO cohort (p < 0.001) and the TCGA cohort (p < 0.001), with its predictive efficacy remaining unaffected by the clinical staging system. Additionally, satisfactory chemotherapeutic benefits were observed in stage II/III CRC patients with high CRCRS but not in those with low CRCRS. A pathomics nomogram constructed by integrating the CRCRS with the tumor-node-metastasis (TNM) staging system enhanced prognostic prediction accuracy compared with using the TNM staging system alone. Noteworthy features of the risk score were identified, such as immature tumor mesenchyme, disorganized gland structures, small clusters of cancer cells associated with unfavorable prognosis, and infiltrating inflammatory cells associated with favorable prognosis. The TCGA multiomics data revealed potential correlations between the CRCRS and the activation of energy production and metabolic pathways, the tumor immune microenvironment, and genetic mutations in APC, SMAD2, EEF1AKMT4, EPG5, and TANC1. In summary, our deep learning algorithm identified the CRCRS as a prognostic indicator in CRC, providing a significant approach for prognostic risk stratification and tailoring precise treatment strategies for individual patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习探索结直肠癌患者病理图像中的预后生物标记。
血色素和伊红(H&E)全切片图像为预测结直肠癌(CRC)患者的预后结果提供了宝贵的信息。然而,由于表型信息的微妙复杂性,从病理图像中提取预后指标具有挑战性。我们在前列腺癌、肺癌、结直肠癌和卵巢癌(PLCO)筛查试验数据集中 640 名结直肠癌患者的数据上训练了一个弱监督深度学习模型,并使用癌症基因组图谱(TCGA)数据集中 522 名结直肠癌患者的数据对其进行了验证。我们创建了结直肠癌风险评分(CRCRS)来评估患者的预后,使用 Grad-CAM 将风险评分的病理表型可视化,并利用 TCGA CRC 队列中的多组学数据来研究风险评分的潜在生物机制。总生存分析表明,CRCRS是PLCO队列的独立预后指标(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pathology Clinical Research
Journal of Pathology Clinical Research Medicine-Pathology and Forensic Medicine
CiteScore
7.40
自引率
2.40%
发文量
47
审稿时长
20 weeks
期刊介绍: The Journal of Pathology: Clinical Research and The Journal of Pathology serve as translational bridges between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The focus of The Journal of Pathology: Clinical Research is the publication of studies that illuminate the clinical relevance of research in the broad area of the study of disease. Appropriately powered and validated studies with novel diagnostic, prognostic and predictive significance, and biomarker discover and validation, will be welcomed. Studies with a predominantly mechanistic basis will be more appropriate for the companion Journal of Pathology.
期刊最新文献
Large language models as a diagnostic support tool in neuropathology. Homologous recombination deficiency score is an independent prognostic factor in esophageal squamous cell carcinoma Breast cancer survival prediction using an automated mitosis detection pipeline Assessing the impact of deep-learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes A clinically feasible algorithm for the parallel detection of glioma-associated copy number variation markers based on shallow whole genome sequencing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1