{"title":"Investigation of the incremental benefits of eccentric collisions in kinetic deflection of potentially hazardous asteroids","authors":"","doi":"10.1016/j.icarus.2024.116312","DOIUrl":null,"url":null,"abstract":"<div><div>In asteroid momentum deflection missions, the presence of ejecta leads to a phenomenon where the system’s momentum appears “amplified” after the impact. This paper makes use of this phenomenon and demonstrates through computational simulations that targeting a point off the geometric center of an asteroid can further enhance the collisional benefit after impact. Due to uncertainties in the attitude of the asteroid and the momentum transfer coefficient <span><math><mrow><mo>(</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></math></span>, this study employs a Monte Carlo approach to address these uncertainties. The results indicate that the strategy proposed in this paper can increase the post-collision deflection distance of the asteroid relative to Earth by an average of 81.05%, while also reducing the standard deviation by an order of magnitude, significantly lowering the uncertainty of the deflection mission. Furthermore, the results show that for certain asteroids particularly sensitive to changes in velocity <span><math><mrow><mi>Δ</mi><mi>v</mi></mrow></math></span>, blindly targeting their geometric center could result in a 48% probability of reducing the minimum distance to Earth. However, the striking strategy developed in this study can avoid this negative outcome. Finally, based on the computational results, a statistical formula is derived to predict the relative gain of the two strategies, concluding that for asteroids with smaller semi-major axes <span><math><mi>a</mi></math></span>, and the interception angle <span><math><mi>α</mi></math></span> at impact is greater, the benefits of employing the approach discussed in this paper are greater.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003725","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In asteroid momentum deflection missions, the presence of ejecta leads to a phenomenon where the system’s momentum appears “amplified” after the impact. This paper makes use of this phenomenon and demonstrates through computational simulations that targeting a point off the geometric center of an asteroid can further enhance the collisional benefit after impact. Due to uncertainties in the attitude of the asteroid and the momentum transfer coefficient , this study employs a Monte Carlo approach to address these uncertainties. The results indicate that the strategy proposed in this paper can increase the post-collision deflection distance of the asteroid relative to Earth by an average of 81.05%, while also reducing the standard deviation by an order of magnitude, significantly lowering the uncertainty of the deflection mission. Furthermore, the results show that for certain asteroids particularly sensitive to changes in velocity , blindly targeting their geometric center could result in a 48% probability of reducing the minimum distance to Earth. However, the striking strategy developed in this study can avoid this negative outcome. Finally, based on the computational results, a statistical formula is derived to predict the relative gain of the two strategies, concluding that for asteroids with smaller semi-major axes , and the interception angle at impact is greater, the benefits of employing the approach discussed in this paper are greater.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.