Changes in the nanomechanical properties of the constituent minerals in the ductile fauske marble and the brittle kuru granite during progressive failure

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL International Journal of Rock Mechanics and Mining Sciences Pub Date : 2024-10-01 DOI:10.1016/j.ijrmms.2024.105853
Wenkai Wan , Charlie C. Li , Siqi Liu , Jianying He
{"title":"Changes in the nanomechanical properties of the constituent minerals in the ductile fauske marble and the brittle kuru granite during progressive failure","authors":"Wenkai Wan ,&nbsp;Charlie C. Li ,&nbsp;Siqi Liu ,&nbsp;Jianying He","doi":"10.1016/j.ijrmms.2024.105853","DOIUrl":null,"url":null,"abstract":"<div><div>The nanoscale elastic moduli and hardness of the constituent minerals of the Class II Kuru granite and the Class I Fauske marble were experimentally investigated. The aims were to correlate the microcrack patterns with the nanomechanical properties of the minerals, and to help understand the important roles of the nanomechanical properties of the minerals in brittle and ductile behaviors. Cylindrical rock specimens were uniaxially loaded to various stress levels in both the pre- and post-peak stages. The specimens were then unloaded to zero, and two thin sections –– one parallel with and the other perpendicular to the loading direction –– were prepared from each specimen. Nano-indentation tests were conducted on the thin sections to measure the elastic moduli and hardness of the major constituent minerals in the rocks. The test results showed that both the elastic moduli and hardness of the minerals abruptly decreased when the applied stress was above 80 % of the uniaxial compressive strength of the rock in the pre-peak stage and also in the entire post-peak stage. At the same time, the values of the two properties became more scattered with increasing damage to the minerals. The number of intragranular cracks was significantly less in the harder quartz and microcline than in the softer calcite. The abundant intragranular cracks in the calcite dissipated most of the strain energy in the Class I marble, such that the rock was not burstable after failure. A small number of intragranular cracks were created in the quartz and microcline in the Class II granite, such that most of the strain energy in the minerals was released to eject rock after failure. Intragranular cracking is thus a key factor in determining whether a rock is burst-prone or not.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105853"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002181","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The nanoscale elastic moduli and hardness of the constituent minerals of the Class II Kuru granite and the Class I Fauske marble were experimentally investigated. The aims were to correlate the microcrack patterns with the nanomechanical properties of the minerals, and to help understand the important roles of the nanomechanical properties of the minerals in brittle and ductile behaviors. Cylindrical rock specimens were uniaxially loaded to various stress levels in both the pre- and post-peak stages. The specimens were then unloaded to zero, and two thin sections –– one parallel with and the other perpendicular to the loading direction –– were prepared from each specimen. Nano-indentation tests were conducted on the thin sections to measure the elastic moduli and hardness of the major constituent minerals in the rocks. The test results showed that both the elastic moduli and hardness of the minerals abruptly decreased when the applied stress was above 80 % of the uniaxial compressive strength of the rock in the pre-peak stage and also in the entire post-peak stage. At the same time, the values of the two properties became more scattered with increasing damage to the minerals. The number of intragranular cracks was significantly less in the harder quartz and microcline than in the softer calcite. The abundant intragranular cracks in the calcite dissipated most of the strain energy in the Class I marble, such that the rock was not burstable after failure. A small number of intragranular cracks were created in the quartz and microcline in the Class II granite, such that most of the strain energy in the minerals was released to eject rock after failure. Intragranular cracking is thus a key factor in determining whether a rock is burst-prone or not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韧性福斯克大理石和脆性库鲁花岗岩在渐进破坏过程中组成矿物的纳米力学特性变化
实验研究了二级库鲁花岗岩和一级法斯克大理石组成矿物的纳米级弹性模量和硬度。目的是将微裂纹模式与矿物的纳米力学性能联系起来,帮助理解矿物的纳米力学性能在脆性和韧性行为中的重要作用。圆柱形岩石试样在峰值前和峰值后阶段均受到不同应力水平的单轴加载。然后将试样卸载至零,从每个试样上制备两个薄片--一个平行于加载方向,另一个垂直于加载方向。对薄片进行纳米压痕测试,以测量岩石中主要成分矿物的弹性模量和硬度。测试结果表明,当施加的应力超过岩石单轴抗压强度的 80% 时,岩石的弹性模量和硬度都会突然下降。同时,这两种属性的值随着矿物受损程度的增加而变得更加分散。较硬的石英和微晶石的粒内裂缝数量明显少于较软的方解石。方解石中大量的粒内裂缝耗散了 I 级大理石中的大部分应变能,因此岩石在破坏后不会爆裂。二级花岗岩中的石英和微晶石中产生了少量粒内裂缝,因此矿物中的大部分应变能都被释放出来,使岩石在破坏后喷出。因此,晶内裂缝是决定岩石是否易爆的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
Mutual feedback and fracturing effect of hydraulic fractures in composite coal−rock reservoirs under different fracturing layer sequence conditions Experimental study on the interaction mechanism of two dynamic cracks under blasting loading Thermo-Hydro-Mechanical (THM) wellbore analysis under sub-zero CO2 injection The effect of strain rate on inelastic strain development in porous sandstones deformed under reservoir conditions Integration of automatic discontinuity identification and multi-scale hierarchical modeling for stability analysis of highly-jointed rock slopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1