One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-09-30 DOI:10.1016/j.jmbbm.2024.106758
Zehra Çobandede , Mustafa Çulha
{"title":"One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering","authors":"Zehra Çobandede ,&nbsp;Mustafa Çulha","doi":"10.1016/j.jmbbm.2024.106758","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomaterials with piezoelectric properties can significantly improve the applicability of polymers used in tissue engineering applications. In this study, we report the one-step synthesis of a novel hybrid piezoelectric composite comprising barium titanates and boron nitride nanotubes. This composite is distinguished by its unique microstructures, including nanoflakes, triangular boron nitride structures, and fiber-like boron nitride nanotube configurations, which contribute to its enhanced piezoelectric properties. The composite was incorporated into a chitosan-based tissue scaffold and evaluated in vitro. Electric-responsive Human Osteoblast cells cultured on the scaffolds are exposed to low-frequency ultrasound stimulation during cell growth. The biocompatibility, cell adhesion, alkaline phosphatase activities, and mineralization of osteoblast cells on the piezo-composite scaffolds were evaluated. The results show that the hybrid piezoelectric composite significantly enhances the properties of chitosan-based scaffold.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106758"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterials with piezoelectric properties can significantly improve the applicability of polymers used in tissue engineering applications. In this study, we report the one-step synthesis of a novel hybrid piezoelectric composite comprising barium titanates and boron nitride nanotubes. This composite is distinguished by its unique microstructures, including nanoflakes, triangular boron nitride structures, and fiber-like boron nitride nanotube configurations, which contribute to its enhanced piezoelectric properties. The composite was incorporated into a chitosan-based tissue scaffold and evaluated in vitro. Electric-responsive Human Osteoblast cells cultured on the scaffolds are exposed to low-frequency ultrasound stimulation during cell growth. The biocompatibility, cell adhesion, alkaline phosphatase activities, and mineralization of osteoblast cells on the piezo-composite scaffolds were evaluated. The results show that the hybrid piezoelectric composite significantly enhances the properties of chitosan-based scaffold.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一步法合成压电混合 BNNT/BaTiO3 复合材料及其在骨组织工程中的应用
具有压电特性的纳米材料可显著提高聚合物在组织工程应用中的适用性。在本研究中,我们报告了一步合成由钛酸钡和氮化硼纳米管组成的新型混合压电复合材料。这种复合材料具有独特的微观结构,包括纳米片、三角形氮化硼结构和纤维状氮化硼纳米管构型,有助于增强其压电特性。该复合材料被纳入壳聚糖基组织支架,并在体外进行了评估。在支架上培养的电反应人类成骨细胞在细胞生长过程中受到低频超声波刺激。评估了压电复合材料支架上成骨细胞的生物相容性、细胞粘附性、碱性磷酸酶活性和矿化度。结果表明,混合压电复合材料显著增强了壳聚糖基支架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Macroscopic creep behavior of spheroids derived from mesenchymal stem cells under compression Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy Editorial Board Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents Plastic strain localization in Bouligand structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1