{"title":"A new deepfake detection model for responding to perception attacks in embodied artificial intelligence","authors":"JunShuai Zheng , XiYuan Hu , Chen Chen , YiChao Zhou , DongYang Gao , ZhenMin Tang","doi":"10.1016/j.imavis.2024.105279","DOIUrl":null,"url":null,"abstract":"<div><div>Embodied artificial intelligence (AI) represents a new generation of robotics technology combined with artificial intelligence, and it is at the forefront of current research. To reduce the impact of deepfake technology on embodied perception and enhance the security and reliability of embodied AI, this paper proposes a novel deepfake detection model with a new Balanced Contrastive Learning strategy, named BCL. By integrating unsupervised contrastive learning and supervised contrastive learning with deepfake detection, the model effectively extracts the underlying features of fake images from both individual level and category level, thereby leading to more discriminative features. In addition, a Multi-scale Attention Interaction module (MAI) is proposed to enrich the representative ability of features. By cross-fusing the semantic features of different receptive fields of the encoder, more effective deepfake traces can be mined. Finally, extensive experiments demonstrate that our method has good performance and generalization capabilities across intra-dataset, cross-dataset and cross-manipulation scenarios.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105279"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003846","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Embodied artificial intelligence (AI) represents a new generation of robotics technology combined with artificial intelligence, and it is at the forefront of current research. To reduce the impact of deepfake technology on embodied perception and enhance the security and reliability of embodied AI, this paper proposes a novel deepfake detection model with a new Balanced Contrastive Learning strategy, named BCL. By integrating unsupervised contrastive learning and supervised contrastive learning with deepfake detection, the model effectively extracts the underlying features of fake images from both individual level and category level, thereby leading to more discriminative features. In addition, a Multi-scale Attention Interaction module (MAI) is proposed to enrich the representative ability of features. By cross-fusing the semantic features of different receptive fields of the encoder, more effective deepfake traces can be mined. Finally, extensive experiments demonstrate that our method has good performance and generalization capabilities across intra-dataset, cross-dataset and cross-manipulation scenarios.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.