Zhen Liu , Shuai Dong , He Yang , Wenzhi Yang , Muyao Zhu
{"title":"Theoretical study on nonlinear seepage mechanism in fractal dendritic fracture network of low permeability coal with water injection","authors":"Zhen Liu , Shuai Dong , He Yang , Wenzhi Yang , Muyao Zhu","doi":"10.1016/j.jnnfm.2024.105327","DOIUrl":null,"url":null,"abstract":"<div><div>Coal seam water injection technology is adopted by many mines as an effective means of dust reduction in coal mines. There is a threshold pressure gradient phenomenon in the process of water injection in low permeability coal seam, which makes the flow of pressure water in the fracture structure of coal body present nonlinear seepage characteristics. To reveal the theoretical relationship between the structural parameters of coal and the nonlinear seepage characteristics, firstly, the Bingham fluid constitutive equation is used to describe the non-Newtonian behavior in low-permeability coal. Combined with the fractal tree-like bifurcation fracture network model, a mathematical analytical model of threshold pressure gradient is established. Secondly, the model was verified by high-pressure water invasion and radial seepage experiments, and the sensitivity of the model was analyzed. The results show that the error between the theoretical calculation value and the experimental measurement value is between 8.65 % and 42.4 %, which verifies the validity of the model. The above research results can provide a theoretical basis for improving the water injection effect of low permeability coal seam.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"333 ","pages":"Article 105327"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001435","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Coal seam water injection technology is adopted by many mines as an effective means of dust reduction in coal mines. There is a threshold pressure gradient phenomenon in the process of water injection in low permeability coal seam, which makes the flow of pressure water in the fracture structure of coal body present nonlinear seepage characteristics. To reveal the theoretical relationship between the structural parameters of coal and the nonlinear seepage characteristics, firstly, the Bingham fluid constitutive equation is used to describe the non-Newtonian behavior in low-permeability coal. Combined with the fractal tree-like bifurcation fracture network model, a mathematical analytical model of threshold pressure gradient is established. Secondly, the model was verified by high-pressure water invasion and radial seepage experiments, and the sensitivity of the model was analyzed. The results show that the error between the theoretical calculation value and the experimental measurement value is between 8.65 % and 42.4 %, which verifies the validity of the model. The above research results can provide a theoretical basis for improving the water injection effect of low permeability coal seam.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.