Thermodynamic re-assessment of the Al-Li-Zn system

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Calphad-computer Coupling of Phase Diagrams and Thermochemistry Pub Date : 2024-09-28 DOI:10.1016/j.calphad.2024.102752
Yanwen Liu, Shuhong Liu, Yong Du
{"title":"Thermodynamic re-assessment of the Al-Li-Zn system","authors":"Yanwen Liu,&nbsp;Shuhong Liu,&nbsp;Yong Du","doi":"10.1016/j.calphad.2024.102752","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum-lithium alloys are a kind of highly promising material due to low density, high strength and excellent modulus properties. The proper addition of Zn can effectively promote the precipitation of the main metastable strengthening phase δ′(Al<sub>3</sub>Li). As a crucial sub-system of Al-Li alloys, literature data on phase diagram and thermodynamic properties of the Al-Li-Zn system as well as the Al-Li and Li-Zn binary systems were comprehensively evaluated by the CALPHAD approach. The Li-Zn system was reassessed mainly by considering the newly reported data on formation enthalpy and activity and a 2-sublattice (SL) model was applied to describe the βLiZn<sub>4</sub> phase. The Al-Li system was modified by considering AlLi<sub>2</sub> and describing the metastable phase δ′(Al<sub>3</sub>Li) with interconvertible 4SL and 2SL ordered-disordered models. The predicted metastable fcc solvus was in perfect agreement with the measurements. Considering the available experimental data, the ternary Al-Li-Zn system was then re-optimized and a self-consistent thermodynamic description of the ternary Al-Li-Zn system was presented. The predicted metastable two-phase region of (Al)+δ’(Al<sub>3</sub>Li) in Al-Li-Zn system can be coupled with the accessible experimental data, which can be expected to well assist in designing high-strength Al-Li alloys.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102752"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000944","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum-lithium alloys are a kind of highly promising material due to low density, high strength and excellent modulus properties. The proper addition of Zn can effectively promote the precipitation of the main metastable strengthening phase δ′(Al3Li). As a crucial sub-system of Al-Li alloys, literature data on phase diagram and thermodynamic properties of the Al-Li-Zn system as well as the Al-Li and Li-Zn binary systems were comprehensively evaluated by the CALPHAD approach. The Li-Zn system was reassessed mainly by considering the newly reported data on formation enthalpy and activity and a 2-sublattice (SL) model was applied to describe the βLiZn4 phase. The Al-Li system was modified by considering AlLi2 and describing the metastable phase δ′(Al3Li) with interconvertible 4SL and 2SL ordered-disordered models. The predicted metastable fcc solvus was in perfect agreement with the measurements. Considering the available experimental data, the ternary Al-Li-Zn system was then re-optimized and a self-consistent thermodynamic description of the ternary Al-Li-Zn system was presented. The predicted metastable two-phase region of (Al)+δ’(Al3Li) in Al-Li-Zn system can be coupled with the accessible experimental data, which can be expected to well assist in designing high-strength Al-Li alloys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝-锂-锌体系的热力学再评估
铝锂合金具有低密度、高强度和优异的模量特性,是一种极具发展前景的材料。适当添加 Zn 能有效促进主要可转移强化相 δ′(Al3Li)的析出。作为铝锂合金的一个重要子系统,我们采用 CALPHAD 方法全面评估了铝锂锌体系以及铝锂和锂锌二元体系的相图和热力学性质的文献数据。主要通过考虑新报道的形成焓和活性数据对锂锌体系进行了重新评估,并应用 2 子晶格(SL)模型描述了 βLiZn4 相。通过考虑 AlLi2 并用可相互转换的 4SL 和 2SL 有序-无序模型来描述δ′(Al3Li)逸散相,对 Al-Li 系统进行了修改。预测的可逸散共晶溶解度与测量结果完全一致。考虑到现有的实验数据,对三元 Al-Li-Zn 体系进行了重新优化,并提出了三元 Al-Li-Zn 体系的自洽热力学描述。所预测的 Al-Li-Zn 系统中 (Al)+δ'(Al3Li) 的可蜕变两相区可与可获得的实验数据相结合,从而有望为设计高强度 Al-Li 合金提供很好的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
期刊最新文献
High temperature phase relations and structure determination of solid solutions in the ternary Nd-Dy-Cu system Phase equilibria relationship in the FetO-TiO2-CaO-SiO2 system with CaO/SiO2 weight ratio of 1.2 at 1673K Phase relationship in Gd2O3-Nd2O3-ZrO2 system at 1673 K and 1873 K Liquidus projection and miscibility gap of the Ag-Cu-Te ternary system Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1