{"title":"Modelling collective invasion with reaction–diffusion equations: When does domain curvature matter?","authors":"J.J. Pollacco , R.E. Baker , P.K. Maini","doi":"10.1016/j.aml.2024.109315","DOIUrl":null,"url":null,"abstract":"<div><div>Real-world cellular invasion processes often take place in curved geometries. Such problems are frequently simplified in models to neglect the curved geometry in favour of computational simplicity, yet doing so risks inaccuracies in any model-based predictions. To quantify the conditions under which neglecting a curved geometry is justifiable, we explore the dynamics of a system of reaction–diffusion equations (RDEs) on a two-dimensional annular geometry analytically. Defining <span><math><mi>ϵ</mi></math></span> as the ratio of the annulus thickness <span><math><mi>δ</mi></math></span> and radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> we derive, through an asymptotic expansion, the conditions under which it is appropriate to ignore the domain curvature for a general system of reaction–diffusion equations. To highlight the consequences of these results, we simulate solutions to the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model, a paradigm nonlinear RDE typically used to model spatial invasion, on an annular geometry. Thus, we quantify the size of the deviation from an analogous simulation on the rectangle, and how this deviation changes across the width of the annulus. We further characterise the nature of the solutions through numerical simulations for different values of <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>δ</mi></math></span>. Our results provide insight into when it is appropriate to neglect the domain curvature in studying travelling wave behaviour in RDEs.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109315"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003355","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Real-world cellular invasion processes often take place in curved geometries. Such problems are frequently simplified in models to neglect the curved geometry in favour of computational simplicity, yet doing so risks inaccuracies in any model-based predictions. To quantify the conditions under which neglecting a curved geometry is justifiable, we explore the dynamics of a system of reaction–diffusion equations (RDEs) on a two-dimensional annular geometry analytically. Defining as the ratio of the annulus thickness and radius we derive, through an asymptotic expansion, the conditions under which it is appropriate to ignore the domain curvature for a general system of reaction–diffusion equations. To highlight the consequences of these results, we simulate solutions to the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model, a paradigm nonlinear RDE typically used to model spatial invasion, on an annular geometry. Thus, we quantify the size of the deviation from an analogous simulation on the rectangle, and how this deviation changes across the width of the annulus. We further characterise the nature of the solutions through numerical simulations for different values of and . Our results provide insight into when it is appropriate to neglect the domain curvature in studying travelling wave behaviour in RDEs.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.