Modelling collective invasion with reaction–diffusion equations: When does domain curvature matter?

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Applied Mathematics Letters Pub Date : 2024-09-21 DOI:10.1016/j.aml.2024.109315
J.J. Pollacco , R.E. Baker , P.K. Maini
{"title":"Modelling collective invasion with reaction–diffusion equations: When does domain curvature matter?","authors":"J.J. Pollacco ,&nbsp;R.E. Baker ,&nbsp;P.K. Maini","doi":"10.1016/j.aml.2024.109315","DOIUrl":null,"url":null,"abstract":"<div><div>Real-world cellular invasion processes often take place in curved geometries. Such problems are frequently simplified in models to neglect the curved geometry in favour of computational simplicity, yet doing so risks inaccuracies in any model-based predictions. To quantify the conditions under which neglecting a curved geometry is justifiable, we explore the dynamics of a system of reaction–diffusion equations (RDEs) on a two-dimensional annular geometry analytically. Defining <span><math><mi>ϵ</mi></math></span> as the ratio of the annulus thickness <span><math><mi>δ</mi></math></span> and radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> we derive, through an asymptotic expansion, the conditions under which it is appropriate to ignore the domain curvature for a general system of reaction–diffusion equations. To highlight the consequences of these results, we simulate solutions to the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model, a paradigm nonlinear RDE typically used to model spatial invasion, on an annular geometry. Thus, we quantify the size of the deviation from an analogous simulation on the rectangle, and how this deviation changes across the width of the annulus. We further characterise the nature of the solutions through numerical simulations for different values of <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>δ</mi></math></span>. Our results provide insight into when it is appropriate to neglect the domain curvature in studying travelling wave behaviour in RDEs.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109315"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003355","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world cellular invasion processes often take place in curved geometries. Such problems are frequently simplified in models to neglect the curved geometry in favour of computational simplicity, yet doing so risks inaccuracies in any model-based predictions. To quantify the conditions under which neglecting a curved geometry is justifiable, we explore the dynamics of a system of reaction–diffusion equations (RDEs) on a two-dimensional annular geometry analytically. Defining ϵ as the ratio of the annulus thickness δ and radius r0 we derive, through an asymptotic expansion, the conditions under which it is appropriate to ignore the domain curvature for a general system of reaction–diffusion equations. To highlight the consequences of these results, we simulate solutions to the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model, a paradigm nonlinear RDE typically used to model spatial invasion, on an annular geometry. Thus, we quantify the size of the deviation from an analogous simulation on the rectangle, and how this deviation changes across the width of the annulus. We further characterise the nature of the solutions through numerical simulations for different values of r0 and δ. Our results provide insight into when it is appropriate to neglect the domain curvature in studying travelling wave behaviour in RDEs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用反应扩散方程模拟集体入侵:域曲率何时重要?
现实世界中的细胞入侵过程往往发生在弯曲的几何形状中。为了简化计算,这类问题经常被简化成忽略弯曲几何的模型,但这样做有可能导致基于模型的预测不准确。为了量化忽略弯曲几何的合理条件,我们对二维环形几何上的反应扩散方程(RDE)系统的动力学进行了分析探索。将 ϵ 定义为环形厚度 δ 与半径 r0 之比,我们通过渐近展开推导出了一般反应扩散方程系统忽略域曲率的合适条件。为了强调这些结果的后果,我们模拟了 Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) 模型在环形几何上的解,这是一个典型的非线性 RDE,通常用于模拟空间入侵。因此,我们量化了与矩形上类似模拟的偏差大小,以及这种偏差在环形宽度上的变化情况。通过对不同 r0 和 δ 值的数值模拟,我们进一步确定了解决方案的性质。我们的结果让我们深入了解了在研究 RDEs 中的行波行为时,何时适合忽略域曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
期刊最新文献
Spatiotemporal dynamics in a three-component predator–prey model Global [formula omitted]-estimates and dissipative [formula omitted]-estimates of solutions for retarded reaction–diffusion equations Acceleration of self-consistent field iteration for Kohn–Sham density functional theory A quadrature formula on triangular domains via an interpolation-regression approach Normalized ground state solutions of the biharmonic Schrödinger equation with general mass supercritical nonlinearities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1