Binglei Yue , Siyi Qiu , Chun Yang , Limei Peng , Yin Zhang
{"title":"Transformer-empowered receiver design of OFDM communication systems","authors":"Binglei Yue , Siyi Qiu , Chun Yang , Limei Peng , Yin Zhang","doi":"10.1016/j.comcom.2024.107960","DOIUrl":null,"url":null,"abstract":"<div><div>With deep learning, we perform channel estimation and signal detection in massive Multiple Input Multiple Output (MIMO)-Orthogonal Frequency Division Multiplexing (OFDM) systems in this paper. Specifically, we design and extend the basic framework of receivers for MIMO-OFDM systems in an end-to-end approach. A Transformer-based MIMO-OFDM receiver called TCD-Receiver is proposed, which introduces a multi-attention mechanism to learn the channel characteristics by introducing a generic and flexible Transformer network structure. The network parameters are updated based on the relationship between the received signal and the original signal, where the final signal information is obtained without explicit channel estimation and the predicted transmit bits are directly output. The experimental results show that the TCD-Receiver proposed can effectively solve the channel distortion and detect the transmitted signals compared with the traditional communication receivers, and its performance can be comparable to that of the traditional OFDM receivers, and it also has obvious advantages in combating the complex and difficult-to-model channel environment as well as the nonlinear interference factors.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"228 ","pages":"Article 107960"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003074","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With deep learning, we perform channel estimation and signal detection in massive Multiple Input Multiple Output (MIMO)-Orthogonal Frequency Division Multiplexing (OFDM) systems in this paper. Specifically, we design and extend the basic framework of receivers for MIMO-OFDM systems in an end-to-end approach. A Transformer-based MIMO-OFDM receiver called TCD-Receiver is proposed, which introduces a multi-attention mechanism to learn the channel characteristics by introducing a generic and flexible Transformer network structure. The network parameters are updated based on the relationship between the received signal and the original signal, where the final signal information is obtained without explicit channel estimation and the predicted transmit bits are directly output. The experimental results show that the TCD-Receiver proposed can effectively solve the channel distortion and detect the transmitted signals compared with the traditional communication receivers, and its performance can be comparable to that of the traditional OFDM receivers, and it also has obvious advantages in combating the complex and difficult-to-model channel environment as well as the nonlinear interference factors.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.