{"title":"A global reweighting approach for cross-domain semantic segmentation","authors":"Yuhang Zhang , Shishun Tian , Muxin Liao , Guoguang Hua , Wenbin Zou , Chen Xu","doi":"10.1016/j.image.2024.117197","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain adaptation semantic segmentation attracts much research attention due to the expensive pixel-level annotation cost. Since the adaptation difficulty of samples is different, the weight of samples should be set independently, which is called reweighting. However, existing reweighting methods only calculate local reweighting information from predicted results or context information in batch images of two domains, which may lead to over-alignment or under-alignment problems. To handle this issue, we propose a global reweighting approach. Specifically, we first define the target centroid distance, which describes the distance between the source batch data and the target centroid. Then, we employ a Fréchet Inception Distance metric to evaluate the domain divergence and embed it into the target centroid distance. Finally, a global reweighting strategy is proposed to enhance the knowledge transferability in the source domain supervision. Extensive experiments demonstrate that our approach achieves competitive performance and helps to improve performance in other methods.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117197"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000985","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised domain adaptation semantic segmentation attracts much research attention due to the expensive pixel-level annotation cost. Since the adaptation difficulty of samples is different, the weight of samples should be set independently, which is called reweighting. However, existing reweighting methods only calculate local reweighting information from predicted results or context information in batch images of two domains, which may lead to over-alignment or under-alignment problems. To handle this issue, we propose a global reweighting approach. Specifically, we first define the target centroid distance, which describes the distance between the source batch data and the target centroid. Then, we employ a Fréchet Inception Distance metric to evaluate the domain divergence and embed it into the target centroid distance. Finally, a global reweighting strategy is proposed to enhance the knowledge transferability in the source domain supervision. Extensive experiments demonstrate that our approach achieves competitive performance and helps to improve performance in other methods.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.