K. Umashankar , G. Kamala Vasanth , R. Krishna Prasad
{"title":"Micromechanical modeling, thermal, and dielectric studies of poly (methyl methacrylate)-barium titanate composites","authors":"K. Umashankar , G. Kamala Vasanth , R. Krishna Prasad","doi":"10.1080/1023666X.2024.2391802","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer composites containing poly (methyl methacrylate) (PMMA) and barium titanate (BaTiO<sub>3</sub>) were synthesized using the solution mixing method. The electrical conductivity of PMMA is 6 × 10<sup>−9</sup> S/cm, and adding 2% fillers reduces to 5 × 10<sup>−9</sup> S/cm. The melting point of PMMA is 373 °C, and adding 2% and 4% fillers increased it to 376 °C and 379 °C, respectively. The polymer chains become less mobile and block macromolecules on the filler surface. The modulus of elasticity and mechanical tensile stress of the polymer composites with a 5-wt% of BaTiO<sub>3</sub> are 759.3 MPa and 75.6 MPa, respectively. The breakdown strength of PMMA is 203 KV and reduces with the addition of 5% filler to 144 KV. The values of <em>E c</em>/<em>E m</em> evaluated using the Tsai-Pagano, Christensen-Waals, ROM, Mori-Tanaka, and Halpin-Tsai models underpredict the modulus compared to experimental <em>E c</em>/<em>E m</em> values. Fourier spectroscopy confirmed the presence of Ti-O and BaTiO<sub>3</sub> bonds in the polymer composite. Scanning electron microscope images reveal spherical aggregates of BaTiO<sub>3</sub> coated with PMMA and an interparticle network. The dielectric constant of PMMA is 3 and increased with the addition of 2% and 4% fillers to 4 and 4.3, respectively.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 521-532"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000362","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer composites containing poly (methyl methacrylate) (PMMA) and barium titanate (BaTiO3) were synthesized using the solution mixing method. The electrical conductivity of PMMA is 6 × 10−9 S/cm, and adding 2% fillers reduces to 5 × 10−9 S/cm. The melting point of PMMA is 373 °C, and adding 2% and 4% fillers increased it to 376 °C and 379 °C, respectively. The polymer chains become less mobile and block macromolecules on the filler surface. The modulus of elasticity and mechanical tensile stress of the polymer composites with a 5-wt% of BaTiO3 are 759.3 MPa and 75.6 MPa, respectively. The breakdown strength of PMMA is 203 KV and reduces with the addition of 5% filler to 144 KV. The values of E c/E m evaluated using the Tsai-Pagano, Christensen-Waals, ROM, Mori-Tanaka, and Halpin-Tsai models underpredict the modulus compared to experimental E c/E m values. Fourier spectroscopy confirmed the presence of Ti-O and BaTiO3 bonds in the polymer composite. Scanning electron microscope images reveal spherical aggregates of BaTiO3 coated with PMMA and an interparticle network. The dielectric constant of PMMA is 3 and increased with the addition of 2% and 4% fillers to 4 and 4.3, respectively.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.