B. M. Alotaibi , Reem Altuijri , A. Atta , E. Abdeltwab , M. M. Abdelhamied
{"title":"Fabrication, structure and optical characteristics of CuO/polymer nanocomposites materials for optical devices","authors":"B. M. Alotaibi , Reem Altuijri , A. Atta , E. Abdeltwab , M. M. Abdelhamied","doi":"10.1080/1023666X.2024.2397392","DOIUrl":null,"url":null,"abstract":"<div><div>The films of P(4ClAni)/CuO, which formed of mixing poly 4-chloroaniline P(4ClAni) by CuO, were fabricated by the casting solution method. The XRD confirmed the successful prepration of the P(4ClAni)/CuO films. Additionally, the effect of CuO on the optical characteristics was determined. The CuO increased the refractive index from 1.09 for P(4ClAni) to 1.11 for P(4ClAni)/CuO-1, and 1.19 for P(4ClAni)/CuO-3, respectively, while the oscillation energy E<sub>0</sub> dropped from 4.29 eV for P(4ClAni) to 3.57 eV for P(4ClAni)/CuO-1, 3.12 eV for P(4ClAni)/CuO-2, and 3.06 eV for P(4ClAni)/CuO-3. The charge transfer between P(4ClAni) and CuO increased optical conductivity as the CuO ratios increased. This suggests that modifications in the electronic structure of the composite due to the interactions between P(4ClAni) and CuO. Also, the plasma frequency increased from 0.87 x 10<sup>12</sup> s<sup>−1</sup> to 2.32 x 10<sup>12</sup> s<sup>−1</sup>. These changes in optical parameters occurred when the polarization of the P(4ClAni)/CuO was altered. The study elucidated the advantages of incorporating CuO nanoparticles as fillers in improving the properties of P(4ClAni) structures. The obtained results indicate the P(4ClAni)/CuO composites were sucessfuly fabricated with novel characteristics that can be applied in flexible optical devices.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000404","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The films of P(4ClAni)/CuO, which formed of mixing poly 4-chloroaniline P(4ClAni) by CuO, were fabricated by the casting solution method. The XRD confirmed the successful prepration of the P(4ClAni)/CuO films. Additionally, the effect of CuO on the optical characteristics was determined. The CuO increased the refractive index from 1.09 for P(4ClAni) to 1.11 for P(4ClAni)/CuO-1, and 1.19 for P(4ClAni)/CuO-3, respectively, while the oscillation energy E0 dropped from 4.29 eV for P(4ClAni) to 3.57 eV for P(4ClAni)/CuO-1, 3.12 eV for P(4ClAni)/CuO-2, and 3.06 eV for P(4ClAni)/CuO-3. The charge transfer between P(4ClAni) and CuO increased optical conductivity as the CuO ratios increased. This suggests that modifications in the electronic structure of the composite due to the interactions between P(4ClAni) and CuO. Also, the plasma frequency increased from 0.87 x 1012 s−1 to 2.32 x 1012 s−1. These changes in optical parameters occurred when the polarization of the P(4ClAni)/CuO was altered. The study elucidated the advantages of incorporating CuO nanoparticles as fillers in improving the properties of P(4ClAni) structures. The obtained results indicate the P(4ClAni)/CuO composites were sucessfuly fabricated with novel characteristics that can be applied in flexible optical devices.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.