Interior noise characteristics, source identification and its quantification contribution of 400 km/h high-speed train in different operating environments
Xiaodan Lan , Jian Han , Jie Zhang , Xinbiao Xiao , Laixian Peng , Yuxuan Zhao
{"title":"Interior noise characteristics, source identification and its quantification contribution of 400 km/h high-speed train in different operating environments","authors":"Xiaodan Lan , Jian Han , Jie Zhang , Xinbiao Xiao , Laixian Peng , Yuxuan Zhao","doi":"10.1016/j.apacoust.2024.110321","DOIUrl":null,"url":null,"abstract":"<div><div>Noise level is one of the core technical indicators of high-speed trains, especially for a speed of 400 km/h. Noise source identification and its contribution quantification are key for interior noise control. This article takes a certain high-speed train running up to 400 km/h as the research object. Firstly, based on the interior noise spectrum and experimental results of source identification based on spherical harmonic function, the main source locations and energy distribution inside the train are determined. Secondly, through polynomial fitting, the correlation between vibration and noise in various areas inside and outside the train and speed is determined. Subsequently, by calculating the energy contribution through area integration, the noise contribution of each interior region is determined, and then the variation law of the noise contribution of each region with the speed is determined, and the quantitative contributions of various areas inside the train are given when the high-speed train is running at 400 km/h. Finally, the vibration and noise inside the train, aerodynamic noise on the train body surface, and noise in the bogie area in open lines and tunnel operating environments are compared and analyzed, as well as their variation laws with speed. The main noise sources inside the train under two types of operating environments are identified, and the contribution rates of noise sources in different areas inside the train are analyzed, further studying the interior noise and vibration transmission characteristics. The results show that, when the high-speed train is running at 400 km/h in open line operating environment, the significant frequency range of interior noise is 40 Hz ∼ 2000 Hz, and dominant interior noise sources are located in the roof and floor. In the tunnel operating environment, the significant frequency range of interior noise is 160 Hz ∼ 1000 Hz, and the primary sources of interior noise are predominantly located in the left window and floor. For the sidewall area, the interior noise comes mainly from the vibration of the inner sidewall when in open line operating environment, while in tunnel operating environment, the interior noise comes mainly from the aerodynamic excitation of the body surface.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Noise level is one of the core technical indicators of high-speed trains, especially for a speed of 400 km/h. Noise source identification and its contribution quantification are key for interior noise control. This article takes a certain high-speed train running up to 400 km/h as the research object. Firstly, based on the interior noise spectrum and experimental results of source identification based on spherical harmonic function, the main source locations and energy distribution inside the train are determined. Secondly, through polynomial fitting, the correlation between vibration and noise in various areas inside and outside the train and speed is determined. Subsequently, by calculating the energy contribution through area integration, the noise contribution of each interior region is determined, and then the variation law of the noise contribution of each region with the speed is determined, and the quantitative contributions of various areas inside the train are given when the high-speed train is running at 400 km/h. Finally, the vibration and noise inside the train, aerodynamic noise on the train body surface, and noise in the bogie area in open lines and tunnel operating environments are compared and analyzed, as well as their variation laws with speed. The main noise sources inside the train under two types of operating environments are identified, and the contribution rates of noise sources in different areas inside the train are analyzed, further studying the interior noise and vibration transmission characteristics. The results show that, when the high-speed train is running at 400 km/h in open line operating environment, the significant frequency range of interior noise is 40 Hz ∼ 2000 Hz, and dominant interior noise sources are located in the roof and floor. In the tunnel operating environment, the significant frequency range of interior noise is 160 Hz ∼ 1000 Hz, and the primary sources of interior noise are predominantly located in the left window and floor. For the sidewall area, the interior noise comes mainly from the vibration of the inner sidewall when in open line operating environment, while in tunnel operating environment, the interior noise comes mainly from the aerodynamic excitation of the body surface.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.