High-resolution CMIP6 analysis highlights emerging climate challenges in alpine and Tibetan Tundra zones

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2024-09-30 DOI:10.1002/met.70001
Bijan Fallah, Masoud Rostami, Iulii Didovets, Zhiwen Dong
{"title":"High-resolution CMIP6 analysis highlights emerging climate challenges in alpine and Tibetan Tundra zones","authors":"Bijan Fallah,&nbsp;Masoud Rostami,&nbsp;Iulii Didovets,&nbsp;Zhiwen Dong","doi":"10.1002/met.70001","DOIUrl":null,"url":null,"abstract":"<p>We employ a high-resolution Köppen climate classification dataset to examine shifts in Tundra zones within the Alps and Asia. Our analysis shows substantial reductions in Tundra areas by the mid-21st century under different Shared. Socioeconomic pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5). Tundra zones in the Alps and the Tibetan Plateau are crucial for their unique climates and role as water reservoirs. Characterized by short, mild summers and long, severe winters, these zones are vital for the glaciers and perennial snow. The projected climate instability may significantly reduce alpine snow cover by mid-century with irreversible consequences. A 2°C temperature increase from the 1981–2010 baseline could eliminate the Tundra climate in the Alps and reduce it by over 70% in Asia. This is particularly concerning given that rivers from the Tibetan Plateau sustain nearly 40% of the global population.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We employ a high-resolution Köppen climate classification dataset to examine shifts in Tundra zones within the Alps and Asia. Our analysis shows substantial reductions in Tundra areas by the mid-21st century under different Shared. Socioeconomic pathways (SSP1-2.6, SSP3-7.0, SSP5-8.5). Tundra zones in the Alps and the Tibetan Plateau are crucial for their unique climates and role as water reservoirs. Characterized by short, mild summers and long, severe winters, these zones are vital for the glaciers and perennial snow. The projected climate instability may significantly reduce alpine snow cover by mid-century with irreversible consequences. A 2°C temperature increase from the 1981–2010 baseline could eliminate the Tundra climate in the Alps and reduce it by over 70% in Asia. This is particularly concerning given that rivers from the Tibetan Plateau sustain nearly 40% of the global population.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率 CMIP6 分析凸显高寒地带和西藏冻土带新出现的气候挑战
我们利用高分辨率柯本气候分类数据集来研究阿尔卑斯山和亚洲苔原带的变化。我们的分析表明,在不同的共享条件下,到 21 世纪中叶,冻原面积将大幅减少。社会经济路径(SSP1-2.6、SSP3-7.0、SSP5-8.5)。阿尔卑斯山和青藏高原的冻土带因其独特的气候和蓄水作用而至关重要。这些地区的特点是夏季短暂而温和,冬季漫长而严酷,对冰川和常年积雪至关重要。预计到本世纪中叶,气候的不稳定性可能会大大减少高山积雪,造成不可逆转的后果。与 1981-2010 年基线相比,气温上升 2°C 就会使阿尔卑斯山脉的苔原气候消失,亚洲的苔原气候则会减少 70% 以上。鉴于青藏高原的河流养活了全球近 40% 的人口,这一点尤其令人担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Estimation of extreme wind speeds with different return periods in the Northwest Pacific Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India Improving blended probability forecasts with neural networks Correction to “Skilful probabilistic medium-range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system” Drought forecasting with regionalization of climate variables and generalized linear model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1