Cultivation reduces quantities of mineral-organic associations in the form of amorphous coprecipitates

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE Soil Pub Date : 2024-09-30 DOI:10.5194/egusphere-2024-2933
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch
{"title":"Cultivation reduces quantities of mineral-organic associations in the form of amorphous coprecipitates","authors":"Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch","doi":"10.5194/egusphere-2024-2933","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Mineral-organic associations are crucial carbon and nutrient reservoirs in soils. However, soil cultivation disrupts these associations, leading to carbon loss and reduced soil fertility. Although, identifying the specific type(s) of mineral-organic associations susceptible to destruction or transformation upon cropping remains challenging, it is essential for devising strategies to preserve organic matter in croplands. Here we aimed to determine the predominant mineral-organic associations and to identify which types of associations are transformed upon cultivation. To achieve this, we sampled an andosol from both a forested and a cultivated area. We then analyzed cultivation-induced changes in soil physicochemical parameters and characterized mineral-organic associations using an array of spectro-microscopic techniques (TEM-EDX, TEM-EELS, and STXM), for comprehensive structural and compositional analysis. At the micro and nanoscale, we observed mineral-organic associations in the form of coprecipitates composed of amorphous oligomers containing Al, Si, and Fe (referred to as nanoCLICs for nanosized coprecipitates of inorganic oligomers with organics). Down to a few hundred nanometers, the nanoCLICs displayed elemental enrichments with C+Al+Si, C+Fe+Al+Si, or Al+Si dominance with less C. In contrast, organic matter exhibited various C speciation without compound-specific enrichments. These findings suggest that mineral-organic associations in andosols are nanoCLICs-type coprecipitates rather than organic matter associated solely with secondary minerals. NanoCLICs were present in both forest and crop andosols, and while cropping led to a 50 % decrease in nanoCLICs, it did not alter their nature. This novel conceptualization of mineral-organic associations as nanoCLICs shifts our understanding of their persistence in andosols and demonstrates their vulnerability to crop-induced changes.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"43 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2933","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Mineral-organic associations are crucial carbon and nutrient reservoirs in soils. However, soil cultivation disrupts these associations, leading to carbon loss and reduced soil fertility. Although, identifying the specific type(s) of mineral-organic associations susceptible to destruction or transformation upon cropping remains challenging, it is essential for devising strategies to preserve organic matter in croplands. Here we aimed to determine the predominant mineral-organic associations and to identify which types of associations are transformed upon cultivation. To achieve this, we sampled an andosol from both a forested and a cultivated area. We then analyzed cultivation-induced changes in soil physicochemical parameters and characterized mineral-organic associations using an array of spectro-microscopic techniques (TEM-EDX, TEM-EELS, and STXM), for comprehensive structural and compositional analysis. At the micro and nanoscale, we observed mineral-organic associations in the form of coprecipitates composed of amorphous oligomers containing Al, Si, and Fe (referred to as nanoCLICs for nanosized coprecipitates of inorganic oligomers with organics). Down to a few hundred nanometers, the nanoCLICs displayed elemental enrichments with C+Al+Si, C+Fe+Al+Si, or Al+Si dominance with less C. In contrast, organic matter exhibited various C speciation without compound-specific enrichments. These findings suggest that mineral-organic associations in andosols are nanoCLICs-type coprecipitates rather than organic matter associated solely with secondary minerals. NanoCLICs were present in both forest and crop andosols, and while cropping led to a 50 % decrease in nanoCLICs, it did not alter their nature. This novel conceptualization of mineral-organic associations as nanoCLICs shifts our understanding of their persistence in andosols and demonstrates their vulnerability to crop-induced changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
培养可减少无定形共沉淀形式的矿物-有机结合体的数量
摘要矿物与有机物的结合是土壤中重要的碳库和养分库。然而,土壤耕作会破坏这些结合,导致碳流失和土壤肥力下降。尽管确定在耕作时容易被破坏或转化的矿物-有机结合体的具体类型仍具有挑战性,但这对于制定保护农田有机质的策略至关重要。在此,我们旨在确定主要的矿物-有机结合体,并确定哪些类型的结合体会在种植时发生转变。为此,我们从林地和耕地中分别采集了一块土壤样本。然后,我们使用一系列光谱显微技术(TEM-EDX、TEM-EELS 和 STXM)分析了耕作引起的土壤理化参数变化,并对矿物-有机结合体进行了表征,以进行全面的结构和成分分析。在微米和纳米尺度上,我们观察到矿物与有机物以共沉淀物的形式结合在一起,共沉淀物由含有铝、硅和铁的无定形低聚物组成(无机低聚物与有机物的纳米级共沉淀物被称为 nanoCLICs)。小至几百纳米的纳米CLICs显示出C+Al+Si、C+Fe+Al+Si或Al+Si为主而C较少的元素富集。这些发现表明,气溶胶中的矿物-有机物关联是纳米CLICs类型的共沉淀,而不是仅与次生矿物关联的有机物。森林和作物气溶胶中都存在纳米CLICs,虽然种植导致纳米CLICs减少了50%,但并没有改变它们的性质。这种将矿物-有机物结合为纳米CLIC的新概念改变了我们对它们在气溶胶中的持久性的理解,并证明了它们易受作物引起的变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
期刊最新文献
Portable X-Ray Fluorescence as a Tool for Urban Soil Contamination Analysis: Accuracy, Precision, and Practicality Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica) Investigating the complementarity of thermal and physical soil organic carbon fractions Overcoming barriers in long-term, continuous monitoring of soil CO2 flux: A low-cost sensor system Exploring the link between cation exchange capacity and magnetic susceptibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1