From Gaze Jitter to Domain Adaptation: Generalizing Gaze Estimation by Manipulating High-Frequency Components

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-09-30 DOI:10.1007/s11263-024-02233-1
Ruicong Liu, Haofei Wang, Feng Lu
{"title":"From Gaze Jitter to Domain Adaptation: Generalizing Gaze Estimation by Manipulating High-Frequency Components","authors":"Ruicong Liu, Haofei Wang, Feng Lu","doi":"10.1007/s11263-024-02233-1","DOIUrl":null,"url":null,"abstract":"<p>Gaze, as a pivotal indicator of human emotion, plays a crucial role in various computer vision tasks. However, the accuracy of gaze estimation often significantly deteriorates when applied to unseen environments, thereby limiting its practical value. Therefore, enhancing the generalizability of gaze estimators to new domains emerges as a critical challenge. A common limitation in existing domain adaptation research is the inability to identify and leverage truly influential factors during the adaptation process. This shortcoming often results in issues such as limited accuracy and unstable adaptation. To address this issue, this article discovers a truly influential factor in the cross-domain problem, <i>i.e.</i>, high-frequency components (HFC). This discovery stems from an analysis of gaze jitter-a frequently overlooked but impactful issue where predictions can deviate drastically even for visually similar input images. Inspired by this discovery, we propose an “embed-then-suppress\" HFC manipulation strategy to adapt gaze estimation to new domains. Our method first embeds additive HFC to the input images, then performs domain adaptation by suppressing the impact of HFC. Specifically, the suppression is carried out in a contrasive manner. Each original image is paired with its HFC-embedded version, thereby enabling our method to suppress the HFC impact through contrasting the representations within the pairs. The proposed method is evaluated across four cross-domain gaze estimation tasks. The experimental results show that it not only enhances gaze estimation accuracy but also significantly reduces gaze jitter in the target domain. Compared with previous studies, our method offers higher accuracy, reduced gaze jitter, and improved adaptation stability, marking the potential for practical deployment.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02233-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gaze, as a pivotal indicator of human emotion, plays a crucial role in various computer vision tasks. However, the accuracy of gaze estimation often significantly deteriorates when applied to unseen environments, thereby limiting its practical value. Therefore, enhancing the generalizability of gaze estimators to new domains emerges as a critical challenge. A common limitation in existing domain adaptation research is the inability to identify and leverage truly influential factors during the adaptation process. This shortcoming often results in issues such as limited accuracy and unstable adaptation. To address this issue, this article discovers a truly influential factor in the cross-domain problem, i.e., high-frequency components (HFC). This discovery stems from an analysis of gaze jitter-a frequently overlooked but impactful issue where predictions can deviate drastically even for visually similar input images. Inspired by this discovery, we propose an “embed-then-suppress" HFC manipulation strategy to adapt gaze estimation to new domains. Our method first embeds additive HFC to the input images, then performs domain adaptation by suppressing the impact of HFC. Specifically, the suppression is carried out in a contrasive manner. Each original image is paired with its HFC-embedded version, thereby enabling our method to suppress the HFC impact through contrasting the representations within the pairs. The proposed method is evaluated across four cross-domain gaze estimation tasks. The experimental results show that it not only enhances gaze estimation accuracy but also significantly reduces gaze jitter in the target domain. Compared with previous studies, our method offers higher accuracy, reduced gaze jitter, and improved adaptation stability, marking the potential for practical deployment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从凝视抖动到领域适应:通过操纵高频成分实现凝视估计的通用化
目光作为人类情感的重要指标,在各种计算机视觉任务中发挥着至关重要的作用。然而,当应用于未知环境时,凝视估计的准确性往往会大大降低,从而限制了其实用价值。因此,如何提高凝视估计器在新领域的通用性成为了一项严峻的挑战。现有领域适应性研究的一个共同局限是,在适应过程中无法识别和利用真正有影响力的因素。这一缺陷往往导致精确度有限和适应不稳定等问题。为解决这一问题,本文发现了跨领域问题中的真正影响因素,即高频成分(HFC)。这一发现源于对凝视抖动的分析--凝视抖动是一个经常被忽视但却很有影响的问题,即使是视觉相似的输入图像,预测结果也会出现很大偏差。受这一发现的启发,我们提出了一种 "嵌入-压制 "HFC 操作策略,使注视估计适应新的领域。我们的方法首先在输入图像中嵌入加性 HFC,然后通过抑制 HFC 的影响来执行域适应。具体来说,抑制是以对比的方式进行的。每幅原始图像都与其嵌入 HFC 的版本配对,从而使我们的方法能够通过配对中的对比表示来抑制 HFC 的影响。我们在四项跨域注视估计任务中对所提出的方法进行了评估。实验结果表明,该方法不仅提高了注视估计的准确性,还显著降低了目标域的注视抖动。与之前的研究相比,我们的方法具有更高的准确性、更低的注视抖动和更好的适应稳定性,这标志着我们的方法具有实际应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Noise-Resistant Multimodal Transformer for Emotion Recognition Polynomial Implicit Neural Framework for Promoting Shape Awareness in Generative Models Deep Attention Learning for Pre-operative Lymph Node Metastasis Prediction in Pancreatic Cancer via Multi-object Relationship Modeling Learning Discriminative Features for Visual Tracking via Scenario Decoupling Hard-Normal Example-Aware Template Mutual Matching for Industrial Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1