{"title":"Simpler Gradient Methods for Blind Super-Resolution With Lower Iteration Complexity","authors":"Jinsheng Li;Wei Cui;Xu Zhang","doi":"10.1109/TSP.2024.3470071","DOIUrl":null,"url":null,"abstract":"We study the problem of blind super-resolution, which can be formulated as a low-rank matrix recovery problem via vectorized Hankel lift (VHL). The previous gradient descent method based on VHL named PGD-VHL relies on additional regularization such as the projection and balancing penalty, exhibiting a suboptimal iteration complexity. In this paper, we propose a simpler unconstrained optimization problem without the above two types of regularization and develop two new and provable gradient methods named VGD-VHL and ScalGD-VHL. A novel and sharp analysis is provided for the theoretical guarantees of our algorithms, which demonstrates that our methods offer lower iteration complexity than PGD-VHL. In addition, ScalGD-VHL has the lowest iteration complexity while being independent of the condition number. Furthermore, our novel analysis reveals that the blind super-resolution problem is less incoherence-demanding, thereby eliminating the necessity for incoherent projections to achieve linear convergence. Empirical results illustrate that our methods exhibit superior computational efficiency while achieving comparable recovery performance to prior arts.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5123-5139"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10697932/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We study the problem of blind super-resolution, which can be formulated as a low-rank matrix recovery problem via vectorized Hankel lift (VHL). The previous gradient descent method based on VHL named PGD-VHL relies on additional regularization such as the projection and balancing penalty, exhibiting a suboptimal iteration complexity. In this paper, we propose a simpler unconstrained optimization problem without the above two types of regularization and develop two new and provable gradient methods named VGD-VHL and ScalGD-VHL. A novel and sharp analysis is provided for the theoretical guarantees of our algorithms, which demonstrates that our methods offer lower iteration complexity than PGD-VHL. In addition, ScalGD-VHL has the lowest iteration complexity while being independent of the condition number. Furthermore, our novel analysis reveals that the blind super-resolution problem is less incoherence-demanding, thereby eliminating the necessity for incoherent projections to achieve linear convergence. Empirical results illustrate that our methods exhibit superior computational efficiency while achieving comparable recovery performance to prior arts.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.